930 resultados para Probabilistic latent semantic analysis (PLSA)
Resumo:
This work presents a methodology for elastic-plastic fracture reliability analysis of plane and axisymmetric structures. The structural reliability analysis is accomplished by means of the FORM analytical method. The virtual crack extension technique based on a direct minimization of potencial energy is utililized for the calculation of the energy release rate. Results are presented to illustrate the performance of the adopted methodology.
Resumo:
This paper presents an approach for probabilistic analysis of unbalanced three-phase weakly meshed distribution systems considering uncertainty in load demand. In order to achieve high computational efficiency this approach uses both an efficient method for probabilistic analysis and a radial power flow. The probabilistic approach used is the well-known Two-Point Estimate Method. Meanwhile, the compensation-based radial power flow is used in order to extract benefits from the topological characteristics of the distribution systems. The generation model proposed allows modeling either PQ or PV bus on the connection point between the network and the distributed generator. In addition allows control of the generator operating conditions, such as the field current and the power delivery at terminals. Results on test with IEEE 37 bus system is given to illustrate the operation and effectiveness of the proposed approach. A Monte Carlo Simulations method is used to validate the results. © 2011 IEEE.
Resumo:
Abstract Background The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heteregeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. Results We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. Conclusions The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.
Resumo:
Due to the growing interest in social networks, link prediction has received significant attention. Link prediction is mostly based on graph-based features, with some recent approaches focusing on domain semantics. We propose algorithms for link prediction that use a probabilistic ontology to enhance the analysis of the domain and the unavoidable uncertainty in the task (the ontology is specified in the probabilistic description logic crALC). The scalability of the approach is investigated, through a combination of semantic assumptions and graph-based features. We evaluate empirically our proposal, and compare it with standard solutions in the literature.
Resumo:
Il cervello umano è composto da una rete complessa, formata da fasci di assoni, che connettono le diverse aree cerebrali. Il fascio arcuato collega l’area imputata alla com- prensione del linguaggio con quella dedicata alla sua produzione. Il fascio arcuato è presente in entrambi gli emisferi cerebrali, anche se spesso è utilizzato prevalente- mente il sinistro. In questa tesi sono state valutate, in un campione di soggetti sani, le differenze tra fascio arcuato destro e sinistro, utilizzando la trattografia, metodica avanzata e non invasiva che permette la ricostruzione della traiettoria delle fibre con immagini RM (Risonanza Magnetica) pesate in diffusione. A questo scopo ho utilizzato un algoritmo probabilistico, che permette la stima di probabilità di connessione della fibra in oggetto con le diverse aree cerebrali, anche nelle sedi di incrocio con fibre di fasci diversi. Grazie all’implementazione di questo metodo, è stato possibile ottenere una ricostruzione accurata del fascio arcuato, an- che nell’emisfero destro dove è spesso critica, tanto da non essere possibile con altri algoritmi trattografici. Parametrizzando poi la geometria del tratto ho diviso il fascio arcuato in venti seg- menti e ho confrontato i parametri delle misure di diffusione, valutate nell’emisfero destro e sinistro. Da queste analisi emerge un’ampia variabilità nella geometria dell’arcuato, sia tra diversi soggetti che diversi emisferi. Nell’emisfero destro l’arcuato incrocia maggiormente fibre appartenenti ad altri fasci. Nell’emisfero sinistro le fibre dell’arcuato sono più compatte e si misura anche una maggiore connettività con altre aree del cervello coinvolte nelle funzioni linguistiche. Nella seconda fase dello studio ho applicato la stessa metodica in due pazienti con lesioni cerebrali, con l’obiettivo di testare il danno del fascio arcuato ipsilaterale alla lesione e stimare se nell’emisfero controlaterale si innescassero meccanismi di plastic- ità strutturale. Questa metodica può essere implementata, in un gruppo di pazienti omogenei, per identificare marcatori RM diagnostici nella fase di pianificazione pre- chirurgica e marcatori RM prognostici di recupero funzionale del linguaggio.
Resumo:
The Default Mode Network (DMN) is a higher order functional neural network that displays activation during passive rest and deactivation during many types of cognitive tasks. Accordingly, the DMN is viewed to represent the neural correlate of internally-generated self-referential cognition. This hypothesis implies that the DMN requires the involvement of cognitive processes, like declarative memory. The present study thus examines the spatial and functional convergence of the DMN and the semantic memory system. Using an active block-design functional Magnetic Resonance Imaging (fMRI) paradigm and Independent Component Analysis (ICA), we trace the DMN and fMRI signal changes evoked by semantic, phonological and perceptual decision tasks upon visually-presented words. Our findings show less deactivation during semantic compared to the two non-semantic tasks for the entire DMN unit and within left-hemispheric DMN regions, i.e., the dorsal medial prefrontal cortex, the anterior cingulate cortex, the retrosplenial cortex, the angular gyrus, the middle temporal gyrus and the anterior temporal region, as well as the right cerebellum. These results demonstrate that well-known semantic regions are spatially and functionally involved in the DMN. The present study further supports the hypothesis of the DMN as an internal mentation system that involves declarative memory functions.
Resumo:
A protein of a biological sample is usually quantified by immunological techniques based on antibodies. Mass spectrometry offers alternative approaches that are not dependent on antibody affinity and avidity, protein isoforms, quaternary structures, or steric hindrance of antibody-antigen recognition in case of multiprotein complexes. One approach is the use of stable isotope-labeled internal standards; another is the direct exploitation of mass spectrometric signals recorded by LC-MS/MS analysis of protein digests. Here we assessed the peptide match score summation index based on probabilistic peptide scores calculated by the PHENYX protein identification engine for absolute protein quantification in accordance with the protein abundance index as proposed by Mann and co-workers (Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231-1245). Using synthetic protein mixtures, we demonstrated that this approach works well, although proteins can have different response factors. Applied to high density lipoproteins (HDLs), this new approach compared favorably to alternative protein quantitation methods like UV detection of protein peaks separated by capillary electrophoresis or quantitation of protein spots on SDS-PAGE. We compared the protein composition of a well defined HDL density class isolated from plasma of seven hypercholesterolemia subjects having low or high HDL cholesterol with HDL from nine normolipidemia subjects. The quantitative protein patterns distinguished individuals according to the corresponding concentration and distribution of cholesterol from serum lipid measurements of the same samples and revealed that hypercholesterolemia in unrelated individuals is the result of different deficiencies. The presented approach is complementary to HDL lipid analysis; does not rely on complicated sample treatment, e.g. chemical reactions, or antibodies; and can be used for projective clinical studies of larger patient groups.
Resumo:
Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator) in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s), there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid. BETASCAN is publicly accessible on the Web at http://betascan.csail.mit.edu.
Resumo:
The alternative classification system for personality disorders in DSM-5 features a hierarchical model of maladaptive personality traits. This trait model comprises five broad trait domains and 25 specific trait facets that can be reliably assessed using the Personality Inventory for DSM-5 (PID-5). Although there is a steadily growing literature on the validity of the PID-5, issues of temporal stability and situational influences on test scores are currently unexplored. We addressed these issues using a sample of 611 research participants who completed the PID-5 three times, with time intervals of two months. Latent state-trait (LST) analyses for each of the 25 PID-5 trait facets showed that, on average, 79.5% of the variance was due to stable traits (i.e., consistency), and 7.7% of the variance was due to situational factors (i.e., occasion specificity). Our findings suggest that the PID-5 trait facets predominantly capture individual differences that are stable across time.