843 resultados para Predictable routing
Resumo:
The advances in low power micro-processors, wireless networks and embedded systems have raised the need to utilize the significant resources of mobile devices. These devices for example, smart phones, tablets, laptops, wearables, and sensors are gaining enormous processing power, storage capacity and wireless bandwidth. In addition, the advancement in wireless mobile technology has created a new communication paradigm via which a wireless network can be created without any priori infrastructure called mobile ad hoc network (MANET). While progress is being made towards improving the efficiencies of mobile devices and reliability of wireless mobile networks, the mobile technology is continuously facing the challenges of un-predictable disconnections, dynamic mobility and the heterogeneity of routing protocols. Hence, the traditional wired, wireless routing protocols are not suitable for MANET due to its unique dynamic ad hoc nature. Due to the reason, the research community has developed and is busy developing protocols for routing in MANET to cope with the challenges of MANET. However, there are no single generic ad hoc routing protocols available so far, which can address all the basic challenges of MANET as mentioned before. Thus this diverse range of ever growing routing protocols has created barriers for mobile nodes of different MANET taxonomies to intercommunicate and hence wasting a huge amount of valuable resources. To provide interaction between heterogeneous MANETs, the routing protocols require conversion of packets, meta-model and their behavioural capabilities. Here, the fundamental challenge is to understand the packet level message format, meta-model and behaviour of different routing protocols, which are significantly different for different MANET Taxonomies. To overcome the above mentioned issues, this thesis proposes an Interoperable Framework for heterogeneous MANETs called IF-MANET. The framework hides the complexities of heterogeneous routing protocols and provides a homogeneous layer for seamless communication between these routing protocols. The framework creates a unique Ontology for MANET routing protocols and a Message Translator to semantically compare the packets and generates the missing fields using the rules defined in the Ontology. Hence, the translation between an existing as well as newly arriving routing protocols will be achieved dynamically and on-the-fly. To discover a route for the delivery of packets across heterogeneous MANET taxonomies, the IF-MANET creates a special Gateway node to provide cluster based inter-domain routing. The IF-MANET framework can be used to develop different middleware applications. For example: Mobile grid computing that could potentially utilise huge amounts of aggregated data collected from heterogeneous mobile devices. Disaster & crises management applications can be created to provide on-the-fly infrastructure-less emergency communication across organisations by utilising different MANET taxonomies.
Resumo:
Tidal stream turbines could have several direct impacts upon pursuit-diving seabirds foraging within tidal stream environments (mean horizontal current speeds > 2 ms−1), including collisions and displacement. Understanding how foraging seabirds respond to temporally variable but predictable hydrodynamic conditions immediately around devices could identify when interactions between seabirds and devices are most likely to occur; information which would quantify the magnitude of potential impacts, and also facilitate the development of suitable mitigation measures. This study uses shore-based observational surveys and Finite Volume Community Ocean Model outputs to test whether temporally predictable hydrodynamic conditions (horizontal current speeds, water elevation, turbulence) influenced the density of foraging black guillemots Cepphus grylle and European shags Phalacrocorax aristotelis in a tidal stream environment in Orkney, United Kingdom, during the breeding season. These species are particularly vulnerable to interactions with devices due to their tendency to exploit benthic and epi-benthic prey on or near the seabed. The density of both species decreased as a function of horizontal current speeds, whereas the density of black guillemots also decreased as a function of water elevation. These relationships could be linked to higher energetic costs of dives in particularly fast horizontal current speeds (>3 ms−1) and deeper water. Therefore, interactions between these species and moving components seem unlikely at particularly high horizontal current speeds. Combining this information, with that on the rotation rates of moving components at lower horizontal current speeds, could be used to assess collision risk in this site during breeding seasons. It is also likely that moderating any device operation during both lowest water elevation and lowest horizontal current speeds could reduce the risk of collisions for these species in this site during this season. The approaches used in this study could have useful applications within Environmental Impact Assessments, and should be considered when assessing and mitigating negative impacts from specific devices within development sites.
Resumo:
We consider the problem of resource selection in clustered Peer-to-Peer Information Retrieval (P2P IR) networks with cooperative peers. The clustered P2P IR framework presents a significant departure from general P2P IR architectures by employing clustering to ensure content coherence between resources at the resource selection layer, without disturbing document allocation. We propose that such a property could be leveraged in resource selection by adapting well-studied and popular inverted lists for centralized document retrieval. Accordingly, we propose the Inverted PeerCluster Index (IPI), an approach that adapts the inverted lists, in a straightforward manner, for resource selection in clustered P2P IR. IPI also encompasses a strikingly simple peer-specific scoring mechanism that exploits the said index for resource selection. Through an extensive empirical analysis on P2P IR testbeds, we establish that IPI competes well with the sophisticated state-of-the-art methods in virtually every parameter of interest for the resource selection task, in the context of clustered P2P IR.
Resumo:
Recent paradigms in wireless communication architectures describe environments where nodes present a highly dynamic behavior (e.g., User Centric Networks). In such environments, routing is still performed based on the regular packet-switched behavior of store-and-forward. Albeit sufficient to compute at least an adequate path between a source and a destination, such routing behavior cannot adequately sustain the highly nomadic lifestyle that Internet users are today experiencing. This thesis aims to analyse the impact of the nodes’ mobility on routing scenarios. It also aims at the development of forwarding concepts that help in message forwarding across graphs where nodes exhibit human mobility patterns, as is the case of most of the user-centric wireless networks today. The first part of the work involved the analysis of the mobility impact on routing, and we found that node mobility significance can affect routing performance, and it depends on the link length, distance, and mobility patterns of nodes. The study of current mobility parameters showed that they capture mobility partially. The routing protocol robustness to node mobility depends on the routing metric sensitivity to node mobility. As such, mobility-aware routing metrics were devised to increase routing robustness to node mobility. Two categories of routing metrics proposed are the time-based and spatial correlation-based. For the validation of the metrics, several mobility models were used, which include the ones that mimic human mobility patterns. The metrics were implemented using the Network Simulator tool using two widely used multi-hop routing protocols of Optimized Link State Routing (OLSR) and Ad hoc On Demand Distance Vector (AODV). Using the proposed metrics, we reduced the path re-computation frequency compared to the benchmark metric. This means that more stable nodes were used to route data. The time-based routing metrics generally performed well across the different node mobility scenarios used. We also noted a variation on the performance of the metrics, including the benchmark metric, under different mobility models, due to the differences in the node mobility governing rules of the models.
Resumo:
The Internet has grown in size at rapid rates since BGP records began, and continues to do so. This has raised concerns about the scalability of the current BGP routing system, as the routing state at each router in a shortest-path routing protocol will grow at a supra-linearly rate as the network grows. The concerns are that the memory capacity of routers will not be able to keep up with demands, and that the growth of the Internet will become ever more cramped as more and more of the world seeks the benefits of being connected. Compact routing schemes, where the routing state grows only sub-linearly relative to the growth of the network, could solve this problem and ensure that router memory would not be a bottleneck to Internet growth. These schemes trade away shortest-path routing for scalable memory state, by allowing some paths to have a certain amount of bounded “stretch”. The most promising such scheme is Cowen Routing, which can provide scalable, compact routing state for Internet routing, while still providing shortest-path routing to nearly all other nodes, with only slightly stretched paths to a very small subset of the network. Currently, there is no fully distributed form of Cowen Routing that would be practical for the Internet. This dissertation describes a fully distributed and compact protocol for Cowen routing, using the k-core graph decomposition. Previous compact routing work showed the k-core graph decomposition is useful for Cowen Routing on the Internet, but no distributed form existed. This dissertation gives a distributed k-core algorithm optimised to be efficient on dynamic graphs, along with with proofs of its correctness. The performance and efficiency of this distributed k-core algorithm is evaluated on large, Internet AS graphs, with excellent results. This dissertation then goes on to describe a fully distributed and compact Cowen Routing protocol. This protocol being comprised of a landmark selection process for Cowen Routing using the k-core algorithm, with mechanisms to ensure compact state at all times, including at bootstrap; a local cluster routing process, with mechanisms for policy application and control of cluster sizes, ensuring again that state can remain compact at all times; and a landmark routing process is described with a prioritisation mechanism for announcements that ensures compact state at all times.
Resumo:
Part 18: Optimization in Collaborative Networks
Resumo:
In the standard Vehicle Routing Problem (VRP), we route a fleet of vehicles to deliver the demands of all customers such that the total distance traveled by the fleet is minimized. In this dissertation, we study variants of the VRP that minimize the completion time, i.e., we minimize the distance of the longest route. We call it the min-max objective function. In applications such as disaster relief efforts and military operations, the objective is often to finish the delivery or the task as soon as possible, not to plan routes with the minimum total distance. Even in commercial package delivery nowadays, companies are investing in new technologies to speed up delivery instead of focusing merely on the min-sum objective. In this dissertation, we compare the min-max and the standard (min-sum) objective functions in a worst-case analysis to show that the optimal solution with respect to one objective function can be very poor with respect to the other. The results motivate the design of algorithms specifically for the min-max objective. We study variants of min-max VRPs including one problem from the literature (the min-max Multi-Depot VRP) and two new problems (the min-max Split Delivery Multi-Depot VRP with Minimum Service Requirement and the min-max Close-Enough VRP). We develop heuristics to solve these three problems. We compare the results produced by our heuristics to the best-known solutions in the literature and find that our algorithms are effective. In the case where benchmark instances are not available, we generate instances whose near-optimal solutions can be estimated based on geometry. We formulate the Vehicle Routing Problem with Drones and carry out a theoretical analysis to show the maximum benefit from using drones in addition to trucks to reduce delivery time. The speed-up ratio depends on the number of drones loaded onto one truck and the speed of the drone relative to the speed of the truck.
Resumo:
In a paper by Biro et al. [7], a novel twist on guarding in art galleries is introduced. A beacon is a fixed point with an attraction pull that can move points within the polygon. Points move greedily to monotonically decrease their Euclidean distance to the beacon by moving straight towards the beacon or sliding on the edges of the polygon. The beacon attracts a point if the point eventually reaches the beacon. Unlike most variations of the art gallery problem, the beacon attraction has the intriguing property of being asymmetric, leading to separate definitions of attraction region and inverse attraction region. The attraction region of a beacon is the set of points that it attracts. For a given point in the polygon, the inverse attraction region is the set of beacon locations that can attract the point. We first study the characteristics of beacon attraction. We consider the quality of a "successful" beacon attraction and provide an upper bound of $\sqrt{2}$ on the ratio between the length of the beacon trajectory and the length of the geodesic distance in a simple polygon. In addition, we provide an example of a polygon with holes in which this ratio is unbounded. Next we consider the problem of computing the shortest beacon watchtower in a polygonal terrain and present an $O(n \log n)$ time algorithm to solve this problem. In doing this, we introduce $O(n \log n)$ time algorithms to compute the beacon kernel and the inverse beacon kernel in a monotone polygon. We also prove that $\Omega(n \log n)$ time is a lower bound for computing the beacon kernel of a monotone polygon. Finally, we study the inverse attraction region of a point in a simple polygon. We present algorithms to efficiently compute the inverse attraction region of a point for simple, monotone, and terrain polygons with respective time complexities $O(n^2)$, $O(n \log n)$ and $O(n)$. We show that the inverse attraction region of a point in a simple polygon has linear complexity and the problem of computing the inverse attraction region has a lower bound of $\Omega(n \log n)$ in monotone polygons and consequently in simple polygons.
Resumo:
Conventional web search engines are centralised in that a single entity crawls and indexes the documents selected for future retrieval, and the relevance models used to determine which documents are relevant to a given user query. As a result, these search engines suffer from several technical drawbacks such as handling scale, timeliness and reliability, in addition to ethical concerns such as commercial manipulation and information censorship. Alleviating the need to rely entirely on a single entity, Peer-to-Peer (P2P) Information Retrieval (IR) has been proposed as a solution, as it distributes the functional components of a web search engine – from crawling and indexing documents, to query processing – across the network of users (or, peers) who use the search engine. This strategy for constructing an IR system poses several efficiency and effectiveness challenges which have been identified in past work. Accordingly, this thesis makes several contributions towards advancing the state of the art in P2P-IR effectiveness by improving the query processing and relevance scoring aspects of a P2P web search. Federated search systems are a form of distributed information retrieval model that route the user’s information need, formulated as a query, to distributed resources and merge the retrieved result lists into a final list. P2P-IR networks are one form of federated search in routing queries and merging result among participating peers. The query is propagated through disseminated nodes to hit the peers that are most likely to contain relevant documents, then the retrieved result lists are merged at different points along the path from the relevant peers to the query initializer (or namely, customer). However, query routing in P2P-IR networks is considered as one of the major challenges and critical part in P2P-IR networks; as the relevant peers might be lost in low-quality peer selection while executing the query routing, and inevitably lead to less effective retrieval results. This motivates this thesis to study and propose query routing techniques to improve retrieval quality in such networks. Cluster-based semi-structured P2P-IR networks exploit the cluster hypothesis to organise the peers into similar semantic clusters where each such semantic cluster is managed by super-peers. In this thesis, I construct three semi-structured P2P-IR models and examine their retrieval effectiveness. I also leverage the cluster centroids at the super-peer level as content representations gathered from cooperative peers to propose a query routing approach called Inverted PeerCluster Index (IPI) that simulates the conventional inverted index of the centralised corpus to organise the statistics of peers’ terms. The results show a competitive retrieval quality in comparison to baseline approaches. Furthermore, I study the applicability of using the conventional Information Retrieval models as peer selection approaches where each peer can be considered as a big document of documents. The experimental evaluation shows comparative and significant results and explains that document retrieval methods are very effective for peer selection that brings back the analogy between documents and peers. Additionally, Learning to Rank (LtR) algorithms are exploited to build a learned classifier for peer ranking at the super-peer level. The experiments show significant results with state-of-the-art resource selection methods and competitive results to corresponding classification-based approaches. Finally, I propose reputation-based query routing approaches that exploit the idea of providing feedback on a specific item in the social community networks and manage it for future decision-making. The system monitors users’ behaviours when they click or download documents from the final ranked list as implicit feedback and mines the given information to build a reputation-based data structure. The data structure is used to score peers and then rank them for query routing. I conduct a set of experiments to cover various scenarios including noisy feedback information (i.e, providing positive feedback on non-relevant documents) to examine the robustness of reputation-based approaches. The empirical evaluation shows significant results in almost all measurement metrics with approximate improvement more than 56% compared to baseline approaches. Thus, based on the results, if one were to choose one technique, reputation-based approaches are clearly the natural choices which also can be deployed on any P2P network.
Resumo:
This thesis investigates how individuals can develop, exercise, and maintain autonomy and freedom in the presence of information technology. It is particularly interested in how information technology can impose autonomy constraints. The first part identifies a problem with current autonomy discourse: There is no agreed upon object of reference when bemoaning loss of or risk to an individual’s autonomy. Here, thesis introduces a pragmatic conceptual framework to classify autonomy constraints. In essence, the proposed framework divides autonomy in three categories: intrinsic autonomy, relational autonomy and informational autonomy. The second part of the thesis investigates the role of information technology in enabling and facilitating autonomy constraints. The analysis identifies eleven characteristics of information technology, as it is embedded in society, so-called vectors of influence, that constitute risk to an individual’s autonomy in a substantial way. These vectors are assigned to three sets that correspond to the general sphere of the information transfer process to which they can be attributed to, namely domain-specific vectors, agent-specific vectors and information recipient-specific vectors. The third part of the thesis investigates selected ethical and legal implications of autonomy constraints imposed by information technology. It shows the utility of the theoretical frameworks introduced earlier in the thesis when conducting an ethical analysis of autonomy-constraining technology. It also traces the concept of autonomy in the European Data Lawsand investigates the impact of cultural embeddings of individuals on efforts to safeguard autonomy, showing intercultural flashpoints of autonomy differences. In view of this, the thesis approaches the exercise and constraint of autonomy in presence of information technology systems holistically. It contributes to establish a common understanding of (intuitive) terminology and concepts, connects this to current phenomena arising out of ever-increasing interconnectivity and computational power and helps operationalize the protection of autonomy through application of the proposed frameworks.
Resumo:
Latency can be defined as the sum of the arrival times at the customers. Minimum latency problems are specially relevant in applications related to humanitarian logistics. This thesis presents algorithms for solving a family of vehicle routing problems with minimum latency. First the latency location routing problem (LLRP) is considered. It consists of determining the subset of depots to be opened, and the routes that a set of homogeneous capacitated vehicles must perform in order to visit a set of customers such that the sum of the demands of the customers assigned to each vehicle does not exceed the capacity of the vehicle. For solving this problem three metaheuristic algorithms combining simulated annealing and variable neighborhood descent, and an iterated local search (ILS) algorithm, are proposed. Furthermore, the multi-depot cumulative capacitated vehicle routing problem (MDCCVRP) and the multi-depot k-traveling repairman problem (MDk-TRP) are solved with the proposed ILS algorithm. The MDCCVRP is a special case of the LLRP in which all the depots can be opened, and the MDk-TRP is a special case of the MDCCVRP in which the capacity constraints are relaxed. Finally, a LLRP with stochastic travel times is studied. A two-stage stochastic programming model and a variable neighborhood search algorithm are proposed for solving the problem. Furthermore a sampling method is developed for tackling instances with an infinite number of scenarios. Extensive computational experiments show that the proposed methods are effective for solving the problems under study.