928 resultados para Power Reactor Development Co.
Resumo:
In this paper, the fabrication method of a new type of carbon monoxide gas sensor based on SnOx with low power consumption and its sensing characteristics have been reported. The electric conductance of this type of sensor evolves oscillation form regularly when the sensor is exposed to low level of CO gas. The oscillation amplitude is directly proportional to the concentration of CO gas over a wide range. The effects of relevant factors. such as. humidity, temperature and interference gases on the sensor properties were examined. The sensing oscillation response mechanism was also discussed.
Resumo:
Fuel cells are recognized as the most promising new power generation technology, but hydrogen supply is still a problem. In our previous work, we have developed a LiLaNiO/gamma-Al2O3 catalyst, which is excellent not only for partial oxidation of hydrocarbons, but also for steam reforming and autothermal reforming. However, the reaction needs pure oxygen or air as oxidant. We have developed a dense oxygen permeable membrane Ba0.5Sr0.5Co0.8Fe0.2O3 which has an oxygen permeation flux around 11.5 ml/cm(2) min at reaction conditions. Therefore, this work is to combine the oxygen permeable membrane with the catalyst LiLaNiO/gamma-Al2O3 in a membrane reactor for hydrogen production by mixed reforming of heptane. Under optimized reaction conditions, a heptane conversion of 100%, a CO selectivity of 91-93% and a H-2 selectivity of 95-97% have been achieved. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In the past twenty years an increasing number of Global South nations have vied for the rights to host prestigious and expensive sport mega events. This trend requires significant reflection given the enormous economic costs of these events, which often produce little capital gain for the host nation (Whitson & Horne, 2006). Furthermore, sport mega events are often utilized for their symbolic capital (Belanger, 2009), which sometimes manifests through forcing people from their land for the sake of “beautification” (Davis, 2006). In this project, then, I asked how technologies of power were utilized by FIFA, corporate stakeholders, and the South African government to control people who were marginal to, or impeded the success of, the World Cup in Nelspruit, South Africa. This project consisted of two parts: the first involved constructing a theoretical framework for better understanding power as it operates through sport mega events in general. To this end I employed Marxian notions of the ordering of physical space, Foucauldian conceptions of sovereignty and governmentality, and Agamben’s (1998) state of exception to determine how particular bodies are constituted and controlled through sport mega events. In the second part, I applied this theoretical framework to the events in South Africa to better elucidate how people became displaced and killed because of the 2010 FIFA World Cup. I used South African popular news and documentaries as empirical evidence and conducted a discursive analysis of said news media. Through this coverage it became apparent that the mega event created the conditions in which new forms of rogue sovereign partnerships could arise through a historically and spatially contingent process of capitalism. The rogue sovereigns’ para-juridico-political orders, the discourses and practices of accumulation by dispossession as a tactic and effect of govermentality, and other historical non-capital subjectivities such as racial identity, all contributed to constituting Agamben’s state of exception in which people could be displaced, killed or left to die in the events surrounding the World Cup.
Resumo:
I challenge the popular notion of European rural development group dynamics and argue for a better understanding of the role of micro-politics as a means of enhancing the performance of these groups. The views are research based and have relevance to the broader rural development and regeneration sector. Micro-politics involves knowledge, power, trust, perceptions, understanding, social networks, values and traits that arise as a result of individuals interacting within a group whilst working on a shared goal, such as rural development. The monetary and time costs to a community of failing to address micro-politics and nurture positive group relations are considerable. These include time spent in unproductive meetings and poorly prioritized—and ultimately unsuccessful—funding applications as a result of failure to agree priorities. Successful groups rely on individuals interacting in a way that achieves a greater social good. Mutual trust amongst the actors lies at the heart of effective group activity. Effective management of micro-politics requires steps to nurture a culture of mutual trust to ensure that rural development actors co-operate rather than play destructive games with one another. A case study example of a relatively straightforward approach illustrates how this might be done in practice.
Resumo:
The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.
Resumo:
In July 2010, the Shanghai Donghai Bridge wind farm, the first commercial offshore wind project was connected to the main grid in China. Three months later, four contracts were handed out to build a total of 1GW wind power capacity in the first round of an offshore concession project by the Chinese central government. At that time, there was a worldwide expectation that Chinese offshore wind power capacity would expand rapidly. However, China only achieved a total offshore wind power installed capacity of 389.2 MW by the end of 2012. This paper studies the recent development of offshore wind power in China by dividing the offshore wind power projects into three categories. This paper presents the difficulties for the Chinese government to achieve its 12th Five Year Plan for offshore wind power. Some policy recommendations to overcome the current difficulties are made in the conclusions.
Resumo:
This paper reports on a technical feasibility study of the production of organo-mineral fertiliser from the co-granulation of limestone powders with tea waste. The results from this preliminary study show that the co-granulation of tea waste provided an alternative method of waste recovery, as it converts the waste into a value-added product. Fertiliser granules were successfully produced from various compositions of limestone and tea waste. The effect of tea waste concentration on granule strength was analysed; the granule strength
was in the range 0.2 to 1.8 MPa depending on powder composition; increasing the tea waste mass fraction resulted in a reduction in granule strength.Varying the teawaste to limestone ratio also influenced the compressibility of the granules; the granules compressibility increased with increasing tea waste mass fraction. It was further found that increasing the mass fraction of tea waste in the binary mixture of powder reduced the granule median size of the batch.
Resumo:
Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO<sub>2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69-91% and 4-27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources.
Resumo:
The reaction mechanism of CO and Fe2O3 in a chemical-looping combustion (CLC) was studied based on density functional theory (DFT) at B3LYP level in this paper. The structures of all reactants, intermediate, transition structures and products of this reaction had been optimized and characterized. The reaction path was validated by means of the intrinsic reaction coordinate (IRC) approach. The result showed that the reaction was divided into two steps, the adsorbed CO molecule on Fe 2O3 surface formed a medium state with one broken Fe-O bond in step1, and in step2, O atom broken here oxidized a subsequent CO molecule in the fuel reactor. Thus, Fe2O3 molecule transport O from air to oxide CO continually in the CLC process. The activation energy and rate coefficients of the two steps were also obtained.