917 resultados para Pore structure characterization, Silica Monoliths, Mesopores, Macropores


Relevância:

40.00% 40.00%

Publicador:

Resumo:

ABSTRACT Humic acids (HA) are a component of humic substances (HS), which are found in nearly all soils, sediments, and waters. They play a key role in many, if not most, chemical and physical properties in their environment. Despite the importance of HA, their high complexity makes them a poorly understood system. Therefore, understanding the physicochemical properties and interactions of HA is crucial for determining their fundamental role and obtaining structural details. Cationic surfactants are known to interact electrostatically and hydrophobically with HA. Because they are a very well-known and characterized system, they offer a good choice as molecular probes for studying HA. The objective of this study was to evaluate the interaction between cationic surfactants and HA through isothermal titration calorimetry in a thermodynamic manner, aiming to obtain information about the basic structure of HA, the nature of this interaction, and if HA from different origins show different basic structures. Contrary to what the supramolecular model asserts, HA structure is not loosely held, though it may separate depending on the conditions the HA are subjected to in their milieu. It did not show any division or conformational change when interacting with surfactants. The basic structure of the HA remains virtually the same regardless of the different sources and compositions of these HA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

En aquest treball presentem dues caracteritzacions de dos valors diferents en el marc dels jocs coalicionals amb cooperació restringida. Les restriccions són introduïdes com una seqüència finita de particions del conjunt del jugadors, de manera que cada una d'elles eés més grollera que l'anterior, formant així una estructura amb diferents nivells d'unions a priori.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mordenite (MOR) was synthesized using rice husk silica and modified by base (B), acid (A) or acid-base (AB) and converted to H-form. The modification did not destroy the MOR structure but increased surface area and generated mesopores. Lewis acidity of the parent and modified MOR samples investigated by aluminum NMR and NH3-TPD showed a decrease in the following order: HMOR > BMOR > ABMOR > AMOR. For the catalytic transformation of methylbutynol, ABMOR provided the highest conversion and selectivity of products from acid sites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cellulose fiber-silica nanocomposites with novel mechanical, chemical and thermal properties have potential to be widely applied in different area. Monodispered silica nanoparticles play an important role in enhancing hybrids properties of hardness, strength, thermal stability etc. On the other hand, cellulose is one of the world’s most abundant and renewable polymers and possesses several unique properties required in many areas and biomedicine. The aim of this master thesis is to study if silica particles from reaction of sodium silicate and sulphuric acid can be adsorbed onto cellulose fiber surfaces via in situ growth. First, nanosilica particles were synthesized. Effect of pH and silica contents were tested. In theoretical part, introduction of silica, methods of preparation of nanosilica from sodium silicate, effect factors and additives were discussed. Then, cellulose fiber-silica nanocomposites were synthesis via route from sodium silicate and route silicic acid. In the experiment of route from sodium silicate, the effects of types of sodium silicate, pH and target ratio of silica to fiber were investigated. From another aspect, the effects of types of sodium silicate, fiber concentration in mixture solution and target ratio of silica to fiber were tested in the experiment of route from silicic acid. Samples were investigated via zeta potential measurement, particle size distribution, ash content measurement and Scanning Electron Microscopy (SEM). The Results of the experiment of preparing silica sol were that the particle size of silica sol was smaller prepared in pH 11.7 than that prepared in pH 9.3. Then in the experiment of synthesis of cellulose fiber-silica nanocomposites, it was concluded that the zeta potential of all the samples were around -16 mV and the highest ash content of all the samples was only 1.4%. The results of SEM images showed only a few of silica particles could be observed on the fiber surface, which corresponded to the value of ash content measurement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For advanced devices in the application fields of data storage, solar cell and biosensing, one of the major challenges to achieve high efficiency is the fabrication of nanopatterned metal oxide surfaces. Such surfaces often require both precise structure at the nanometer scale and controllable patterned structure at the macro scale. Nowadays, the dominating candidates to fabricate nanopatterned surfaces are the lithographic technique and block-copolymer masks, most of which are unfortunately costly and inefficient. An alternative bottom-up approach, which involves organic/inorganic self-assembly and dip-coating deposition, has been studied intensively in recent years and has proven to be an effective technique for the fabrication of nanoperforated metal oxide thin films. The overall objective of this work was to optimize the synthesis conditions of nanoperforated TiO2 (NP-TiO2) thin films, especially to be compatible with mixed metal oxide systems. Another goal was to develop fabrication and processing of NP-TiO2 thin films towards largescale production and seek new applications for solar cells and biosensing. Besides the traditional dip-coating and drop-casting methods, inkjet printing was used to prepare thin films of metal oxides, with the advantage of depositing the ink onto target areas, further enabling cost-effective fabrication of micro-patterned nanoperforated metal oxide thin films. The films were characterized by water contact angle determination, Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Grazing Incidence XRay Diffraction. In this study, well-ordered zinc titanate nanoperforated thin films with different Zn/Ti ratios were produced successfully with zinc precursor content up to 50 mol%, and the dominating phase was Zn2Ti3O8. NP-TiO2 structures were also obtained by a cost-efficient means, namely inkjet printing, at both ambient temperature and 60 °C. To further explore new biosensing applications of nanoperforated oxide thin films, inkjet printing was used for the fabrication of both continuous and patterned polymeric films onto NP-TiO2 and perfluorinated phosphate functionalized NP-TiO2 substrates, respectively. The NP-TiO2 films can be also functionalized with a fluoroalkylsilane, resulting in hydrophobic surfaces on both titania and silica. The surface energy contrast in the nanoperforations can be tuned by irradiating the films with UV light, which provides ideal model systems for wettability studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Les brosses de polyélectrolytes font l’objet d’une attention particulière pour de nombreuses applications car elles présentent la capacité de changer de conformation et, par conséquent, de propriétés de surface en réponse aux conditions environnementales appliquées. Le contrôle des principaux paramètres de ces brosses telles que l'épaisseur, la composition et l'architecture macromoléculaire, est essentiel pour obtenir des polymères greffés bien définis. Ceci est possible avec la Polymérisation Radicalaire par Transfert d’Atomes - Initiée à partir de la Surface (PRTA-IS), qui permet la synthèse de brosses polymériques de manière contrôlée à partir d’une couche d'amorceurs immobilisés de manière covalente sur une surface. Le premier exemple d’une synthèse directe de brosses de poly(acide acrylique) (PAA) par polymérisation radicalaire dans l’eau a été démontré. Par greffage d’un marqueur fluorescent aux brosses de PAA et via l’utilisation de la microscopie de fluorescence par réflexion totale interne, le dégreffage du PAA en temps réel a pu être investigué. Des conditions environnementales de pH ≥ 9,5 en présence de sel, se sont avérées critiques pour la stabilité de la liaison substrat-amorceur, conduisant au dégreffage du polymère. Afin de protéger de l’hydrolyse cette liaison substrat-amorceur sensible et prévenir le dégreffage non souhaité du polymère, un espaceur hydrophobique de polystyrène (PS) a été inséré entre l'amorceur et le bloc de PAA stimuli-répondant. Les brosses de PS-PAA obtenues étaient stables pour des conditions extrêmes de pH et de force ionique. La réponse de ces brosses de copolymère bloc a été étudiée in situ par ellipsométrie, et le changement réversible de conformation collapsée à étirée, induit par les variations de pH a été démontré. De plus, des différences de conformation provenant des interactions du bloc de PAA avec des ions métalliques de valence variable ont été obtenues. Le copolymère bloc étudié semble donc prometteur pour la conception de matériaux répondant rapidement a divers stimuli. Par la suite, il a été démontré qu’un acide phosphonique pouvait être employé en tant qu’ amorceur PRTA-IS comme alternative aux organosilanes. Cet amorceur phosphonate a été greffé pour la première fois avec succès sur des substrats de silice et une PRTA-IS en milieux aqueux a permis la synthèse de brosses de PAA et de poly(sulfopropyl méthacrylate). La résistance accrue à l’hydrolyse de la liaison Sisubstrat-O- Pamorceur a été confirmée pour une large gamme de pH 7,5 à 10,5 et a permis l’étude des propriétés de friction des brosses de PAA sous différentes conditions expérimentales par mesure de forces de surface. Malgré la stabilité des brosses de PAA à haute charge appliquée, les études des propriétés de friction ne révèlent pas de changement significatif du coefficient de friction en fonction du pH et de la force ionique.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis deals with the synthesis, characterization and catalysis activity studies of some zeolite encapsulated complexes. Encapsulation inside the zeolite cages makes the catalysts more stable. Further, the framework prevents the complexes from dimerising. Catalysis by metal complexes encapsulated in the cavities of zeolites and other molecular sieves has many features of homogeneous, heterogenous and enzymatic catalysis. Serious attempts has been made to gain product selectivity in catalysis .The catalytic activity shown by the encapsulated complexes can be correlated to the structure of the active site inside the zeolite pore. It deals with the studies on the partial oxidation of benzyl alcohol to benzaldehyde. The oxidatio was carried out using hydrogen peroxide as oxidant in presence of PdYDMG and CuYSPP as catalysts. The product (benzaldehyde) was detected using TLC and confirmed using GC.The catalytic activity of the complexes was tested for oxidation under various conditions. The operating conditions like the amount of the catalyst, reaction time, oxidant to substrate ratio, reaction temprature, and solvents have been optimized. No further oxidation products were obtained on continuing the reaction for four hours beyond the optimum time. Maximum conversion was obtained at room temperature and the percentage conversion decreased with increase in temperature. Activity was found to be dependent on the solvent used. With increasing awareness about the dangers of environmental degradation, research in chemistry is getting increasing geared to the development of “green chemistry,” by designing environmentally friendly products and processes that bring down the generation and use of hazardous substances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mononuclear cobalt(II) complex [CoL2] H2O (where HL is quinoxaline-2-carboxalidine- 2-amino-5-methylphenol) has been prepared and characterized by elemental analysis, conductivity measurement, IR, UV-Vis spectroscopy, TG-DTA, and X-ray structure determination. The crystallographic study shows that cobalt(II) is distorted octahedral with each tridentate NNO Schiff base in a cis arrangement. The crystal exhibits a 2-D polymeric structure parallel to [010] plane, formed by O-H...N and O-H... O intermolecular hydrogen bonds and pye stacking interactions, as a racemic mixture of optical enantiomers. The ligand is a Schiff base derived from quinoxaline-2-carboxaldehyde

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An efficient one-pot synthesis of two new heterocyclic perimidines 4-(2,3-dihydro-1H-perimidin-2-yl)-2-methoxyphenol and 2-(quinoxalin-2-yl)-2,3-dihydro-1H-perimidine in good yields is presented. This methodology provides a simple, straightforward synthetic route to these interesting classes of heterocycles. Crystal structure, solvatochromism and antibacterial activity of these organic compounds are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mesoporous materials are of great interest to the materials community because of their potential applications for catalysis,separation of large molecules,medical implants,semiconductors,magnetoelectric devices.The thesis entitled 'Ordered Mesoporous Silica as supports for immobilization of Biocatalyst' presents how the pore size can be tuned without the loss in ordered structure for the entrapment of an industially important biocatalyst-amylase.Immobilization of enzymes on ordered mesoporous material has triggered new ooportunities for stabilizing enzymes with improved intrinsic and operational stabilities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mesoporous silica nanoparticles provide a non-invasive and biocompatible delivery platform for a broad range of applications in therapeutics, pharmaceuticals and diagnosis. Additionally, mesoporous silica materials can be synthesized together with other nanomaterials to create new nanocomposites, opening up a wide variety of potential applications. The ready functionalization of silica materials makes them ideal candidates for bioapplications and catalysis. These properties of mesoporous silica like high surface areas, large pore volumes and ordered pore networks allow them for higher loading of drugs or biomolecules. Comparative studies have been made to evaluate the different procedures; much of the research to date has involved quick exploration of new methods and supports. Requirements for different enzymes may vary, and specific conditions may be needed for a particular application of an immobilized enzyme such as a highly rigid support. In this endeavor, mesoporous silica materials having different pore size were synthesized and easily modified with active functional groups and were evaluated for the immobilization of enzymes. In this work, Aspergillus niger glucoamylase, Bovine liver catalase, Candida rugosa lipase were immobilized onto support by adsorption and covalent binding. The structural properties of pure and immobilized supports are analyzed by various characterization techniques and are used for different reactions of industrial applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2] H2O (1), [CuLNCS] ½H2O (2), [CuLNO3] ½H2O (3), [Cu(HL)Cl2] H2O (4), [Cu2(HL)2(SO4)2] 4H2O (5), [CuLClO4] ½H2O (6), [CuLBr] 2H2O (7), [CuL2] H2O (8) and [CuLN3] CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2 y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this venture three distinct class of catalysts such as, pillared clays and transition metal loaded pillared clays , porous clay heterostructures and their transition metal loaded analogues and DTP supported on porous clay heterostructures etc. were prepared and characterized by various physico chemical methods. The catalytic activities of prepared catalysts were comparatively evaluated for the industrially important alkylation, acetalization and oxidation reactions.The general conclusions drawn from the present investigation are  Zirconium, iron - aluminium pillared clays were synthesized by ion exchange method and zirconium-silicon porous heterostructures were Summary and conclusions 259 prepared by intergallery template method. Transition metals were loaded in PILCs and PCHs by wet impregnation method.  Textural and acidic properties of the clays were modified by pillaring and post pillaring modifications.  The shift in 2θ value to lower range and increase in d (001) spacing indicate the success of pillaring process.  Surface area, pore volume, average pore size etc. increased dramatically as a result of pillaring process.  Porous clay heterostructures have higher surface area, pore volume, average pore diameter and narrow pore size distribution than that of pillared clays.  The IR spectrum of PILCs and PCHs are in accordance with literature without much variation compared to parent montmorillonite which indicate that basic clay structure is retained even after modification.  The silicon NMR of PCHs materials have intense peaks corresponding to Q4 environment which indicate that mesoporous silica is incorporated between clay layers.  Thermo gravimetric analysis showed that thermal stability is improved after the pillaring process. PCH materials have higher thermal stability than PILCs.  In metal loaded pillared clays, up to 5% metal species were uniformly dispersed (with the exception of Ni) as evident from XRD and TPR analysis. Chapter 9 260  Impregnation of transition metals in PILCs and PCHs enhanced acidity of catalysts as evident from TPD of ammonia and cumene cracking reactions.  For porous clay heterostructures the acidic sites have major contribution from weak and medium acid sites which can be related to the Bronsted sites as evident from TPD of ammonia.  Pillared clays got more Lewis acidity than PCHs as inferred from α- methyl styrene selectivity in cumene cracking reaction.  SEM images show that layer structure is preserved even after modification. Worm hole like morphology is observed in TEM image of PCHs materials  In ZrSiPCHS, Zr exists as Zr 4+ and is incorporated to silica pillars in the intergallary of clay layers as evident from XPS analysis.  In copper loaded zirconium pillared clays, copper exists as isolated species with +2 oxidation state at lower loading. At higher loading, Cu exists as clusters as evident from reduction peak at higher temperatures in TPR.  In vanadium incorporated PILCs and PCHs, vanadium exist as isolated V5+ in tetrahedral coordination which is confirmed from TPR and UVVis DRS analysis.  In cobalt loaded PCHs, cobalt exists as CoO with 2+ oxidation state as confirmed from XPS.  Cerium incorporated iron aluminium pillared clay was found to be the best catalyst for the hydroxylation of phenol in aqueous media due to the additional surface area provided by ceria mesopores and its redox properties. Summary and conclusions 261  Cobalt loaded zirconium porous clay heterostructures were found to be promising catalyst for the tertiary butylation of phenol due to higher surface area and acidic properties.  Copper loaded pillared clays were found to be good catalyst for the direct hydroxylation of benzene to phenol.  Vanadium loaded PCHs catalysts were found to be efficient catalysts for oxidation of benzyl alcohol.  DTP was firmly fixed on the mesoporous channels of PCHs by Direct method and functionalization method.  DTP supported PCHs catalyst were found to be good catalyst for acetalization of cyclohexanone with more than 90% conversion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oxorhenium(V) complexes of beta-diketonate systems have been synthesized and isolated in pure form. The red complexes n-Bu4N[ReO(R1COCHCOR2)Cl-3] (acac, R-1=R-2=CH3; bzac, R-1=CH3 and R-2=C6H5; bzbz, R-1=R-2=C6H5) have been characterized by elemental analyses, spectroscopic and other physico-chemical tools. One complex, n-Bu4N[ReO(bzbz)Cl-3] (1c) has been subjected to single-crystal X-ray analysis. In the structure of the anion, the metal has a six-coordinate octahedral environment in which the bidentate -diketone ligand is cis and trans to the terminal oxygen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reactivities of pyridylthioazophenols (1) with zinc(II) salts have been studied and the complexes isolated in pure form and characterized. Pyridylthioazophenols react with zinc( II)acetate in MeOH/EtOH at room temperature to give a series of pyridylsulfinylazophenols (2)but no zinc( II) complex. The sulfoxides (2) have been characterized by IR and NMR. One of the pyridylsulfinylazophenols (2a) has been subjected to single-crystal X-ray analysis in order to confirm details of its structure. A series of dimeric zinc( II) complexes of tetradentate NSNO pyridylthioazophenolates has been isolated through reaction of zinc nitrate in MeOH followed by in situ reaction with azide ion, which acts as a mu-(1,1) bridge. All complexes have been characterized spectroscopically. The detailed structure of one of the dinuclear zinc( II) complexes has been established by a single-crystal X-ray structure determination. In complex 3a two octahedrally coordinated zinc( II) ions are bridged by two end-on azide ions. No reactions of pyridylthioazophenols with zinc chloride in refluxing EtOH have been observed.