904 resultados para Poly(acrylic acid)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The final publication is available at Springer via http://dx.doi.org/[10.1007/s10853-015-9458-2]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Instituto de Química, Curso de Pós-Graduação em Química, 2016.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Injured bone initiates the healing process by forming a blood clot at the damaged site. However, in severe damage, synthetic bone implants are used to provide structural integrity and restore the healing process. The implant unavoidably comes into direct contact with whole blood, leading to a blood clot formation on its surface. Despite this, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Surface chemistry of a biomaterial is a crucial property in mediating blood-biomaterials interactions, and hence the formation of the resultant blood clot. Surfaces presenting mixtures of functional groups carboxyl (–COOH) and methyl (–CH3) have been shown to enhance platelet response and coagulation activation, leading to the formation of fibrin fibres. In addition, it has been shown that varying the compositions of these functional groups and the length of alkyl groups further modulate the immune complement response. In this study, we hypothesised that a biomaterial surface with mixture of –COOH/–CH3(methyl), –CH2CH3 (ethyl) or –(CH2)3CH3 (butyl) groups at different ratios would modulate blood coagulation and complement activation, and eventually tailor the structural and functional properties of the blood clot formed on the surface, which subsequently impacts new bone formation. Firstly, we synthesised a series of materials composed of acrylic acid (AA), and methyl (MMA), ethyl (EMA) or butyl methacrylates (BMA) at different ratios and coated on the inner surfaces of incubation vials. Our surface analysis showed that the amount of –COOH groups on the surface coatings was lower than the ratios of AA prepared in the materials even though the surface content of –COOH groups increased with increasing in AA ratios. It was indicated that the surface hydrophobicity increased with increasing alkyl chain length: –CH 3 > –CH2CH3 > –(CH2)3CH3, and decreased with increasing –COOH groups. No significant differences in surface hydrophobicity was found on surfaces with –CH3 and –CH2CH3 groups in the presence of –COOH groups. The material coating was as smooth as uncoated glass and without any major flaws. The average roughness of material-coated surface (3.99 ± 0.54 nm) was slightly higher than that of uncoated glass surface (2.22 ± 0.29 nm). However, no significant differences in surface average roughness was found among surfaces with the same functionalities at different –COOH ratios nor among surfaces with different alkyl groups but the same –COOH ratios. These suggested that the surface functional groups and their compositions had a combined effect on modulating surface hydrophobicity but not surface roughness. The second part of our study was to investigate the effect of surface functional groups and their compositions on blood cascade activation and structural properties of the formed clots. It was found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/–CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of activation. Moreover, all material-coated surfaces markedly reduced the complement activation compared to uncoated glass surfaces, and the pattern of complement activation was entirely similar to that of surface-induced coagulation, suggesting there is an interaction between two cascades. The clots formed on material-coated surfaces had thicker fibrin with a tighter network at the exterior when compared to uncoated glass surfaces. Compared to the clot exteriors, thicker fibrins with a loose network were found in clot interiors. Coated surfaces resulted in more rigid clots with a significantly slower fibrinolysis after 1 h of lysis when compared to uncoated glass surfaces. Significant differences in fibrinolysis after 1 h of lysis among clots on material-coated surfaces correlated well with the differences in fibrin thickness and density at clot exterior. In addition, more growth factors were released during clot formation than during clot lysis. From an intact clot, there was a correlation between the amount of PDGF-AB release and fibrin density. Highest amount of PDGF-AB was released from clots formed on surfaces with 40% –COOH/60% –CH 3 (i.e. 65MMA). During clot lysis, the release of PDGF-AB also correlated with the fibrinolytic rate while the release of TGF-â1 was influenced by the fibrin thickness. This suggested that different clot structures led to different release profiles of growth factors in clot intact and degrading stages. We further validated whether the clots formed on material-coatings provide the microenvironment for improved bone healing by using a rabbit femoral defect model. In this pilot study, the implantation of clots formed on 65MMA coatings significantly increased new bone formation with enhanced chondrogenesis, osteoblasts activity and vascularisation, but decreased inflammatory macrophage number at the defects after 4 weeks when compared to commercial bone grafts ChronOSTM â-TCP granules. Empty defects were observed when blood clot formation was inhibited. In summary, our study demonstrated that surface functional groups and their relative ratios on material coatings synergistically modulate activation of blood cascades, resultant fibrin architecture, rigidity, susceptibility to fibrinolysis as well as growth factor release of the formed clots, which ultimately alter the healing microenvironment of injured bones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 x 10(7) to 2.03 x 10(8) molecules per capsule with decrease in pH from 4.5 to 3.The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM).The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The humid aging of composite propellants containing a terpolymer of polybutadiene, acrylic acid, and acrylonitrile (PBAN) as a binder has been studied as a function of aging temperature, relative humidity, and aging time. Three composite types - AP-PBAN, AP-Al-PBAN, and AP-(Al-Mg) alloy- PBAN - have been studied. The burning rates of all three propellant types were unaffected by aging. The calorimetric values of composites containing aluminum-magnesium alloy decreased on aging, and the lattice parameter of the alloy decreased to a value close to that of aluminum. Water absorption in all of the samples increased with increases in the temperature, relative humidity, and aging time. The compression strength of the nonmetalized and aluminized samples decreased on aging, whereas that of the composites containing the alloy increased. The latter effect has been traced to reaction of residual carboxyl groups on the polymer chains with magnesium, leading to cross-linking. The reaction between the -COOH groups and magnesium has been proved using infrared spectroscopy. (Author)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly (methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO3 particles followed by core removal with ethylene-diaminetetraacetic add (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing industrial utilization of polyacrylamide to assist water clarification, sludge conditioning, papermaking, and secondary oil recovery leads to environmental pollution. In this work, an acrylamide degrading bacterium was isolated from paper mill effluent at Charan mahadevi, Tamilnadu, India. The minimal medium containing acrylamide (40 mM) served as a sole source of carbon and nitrogen for acrylamide degrading bacteria. The bacterial strain has grown well in 40 mM acrylamide at pH (6-7) at 30 degrees C. Within 24-48 h acrylamide was converted into acrylic acid and other metabolites. Based on biochemical characteristics and 16S rRNA gene sequence, the bacterial strain was identified as Gram negative, diplobacilli Moraxella osloensis MSU11. The acrylamide hydrolyzing bacterial enzyme acrylamidase was purified by HPLC. The enzyme molecular weight was determined to be approximately 38 kDa by SDS-PAGE using reference enzyme Pectinase. These results show that M. osloensis MSU11 has a potential to degrade the acrylamide present in the environment. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyelectrolyte multilayer (PEM) thin film composed of weak polyelectrolytes was designed by layer-by-layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) for multi-drug delivery applications. Environmental stimuli such as pH and ionic strength showed significant influence in changing the film morphology from pore-free smooth structure to porous structure and favored triggered release of loaded molecules. The film was successfully loaded with bovine serum albumin (BSA) and ciprofloxacin hydrochloride (CH) by modulating the porous polymeric network of the film. Release studies showed that the amount of release could be easily controlled by changing the environmental conditions such as pH and ionic strength. Sustained release of loaded molecules was observed up to 8 h. The fabricated films were found to be biocompatible with epithelial cells during in-vitro cell culture studies. PEM film reported here not only has the potential to be used as self-responding thin film platform for transdermal drug delivery, but also has the potential for further development in antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work describes the design and synthesis of a true, heterogeneous, asymmetric catalyst. The catalyst consists of a thin film that resides on a high-surface- area hydrophilic solid and is composed of a chiral, hydrophilic organometallic complex dissolved in ethylene glycol. Reactions of prochiral organic reactants take place predominantly at the ethylene glycol-bulk organic interface.

The synthesis of this new heterogeneous catalyst is accomplished in a series of designed steps. A novel, water-soluble, tetrasulfonated 2,2'-bis (diphenylphosphino)-1,1'-binaphthyl (BINAP-4S0_3Na) is synthesized by direct sulfonation of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP). The rhodium (I) complex of BINAP-4SO_3Na is prepared and is shown to be the first homogeneous catalyst to perform asymmetric reductions of prochiral 2-acetamidoacrylic acids in neat water with enantioselectivities as high as those obtained in non-aqueous solvents. The ruthenium (II) complex, [Ru(BINAP-4SO_3Na)(benzene)Cl]Cl is also synthesized and exhibits a broader substrate specificity as well as higher enantioselectivities for the homogeneous asymmetric reduction of prochiral 2-acylamino acid precursors in water. Aquation of the ruthenium-chloro bond in water is found to be detrimental to the enantioselectivity with some substrates. Replacement of water by ethylene glycol results in the same high e.e's as those found in neat methanol. The ruthenium complex is impregnated onto a controlled pore-size glass CPG-240 by the incipient wetness technique. Anhydrous ethylene glycol is used as the immobilizing agent in this heterogeneous catalyst, and a non-polar 1:1 mixture of chloroform and cyclohexane is employed as the organic phase.

Asymmetric reduction of 2-(6'-methoxy-2'-naphthyl)acrylic acid to the non-steroidal anti-inflammatory agent, naproxen, is accomplished with this heterogeneous catalyst at a third of the rate observed in homogeneous solution with an e.e. of 96% at a reaction temperature of 3°C and 1,400 psig of hydrogen. No leaching of the ruthenium complex into the bulk organic phase is found at a detection limit of 32 ppb. Recycling of the catalyst is possible without any loss in enantioselectivity. Long-term stability of this new heterogeneous catalyst is proven by a self-assembly test. That is, under the reaction conditions, the individual components of the present catalytic system self-assemble into the supported-catalyst configuration.

The strategies outlined here for the design and synthesis of this new heterogeneous catalyst are general, and can hopefully be applied to the development of other heterogeneous, asymmetric catalysts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As nanopartículas de ferritas de manganês (MnFe2O4) tem sido de grande interesse por causa de suas notáveis propriedades magnéticas doces (baixa coercividade e moderada magnetização de saturação) acompanhada com boa estabilidade química e dureza mecânica. A formação de materiais híbridos/compósito estabiliza as nanopartículas magnéticas (NPMs) e gera funcionalidades aos materiais. Entretanto, não foi encontrada na literatura uma discussão sobre a síntese e as propriedades de polímeros polares reticulados à base de ácido metacrílico contendo ferritas de manganês na matriz polimérica. Assim, o objetivo desta Dissertação foi produzir partículas esféricas poliméricas reticuladas, com boas propriedades magnéticas, à base de ácido metacrílico, estireno, divinilbenzeno e ferritas de manganês. Neste trabalho, foram sintetizados compósitos de ferrita de manganês (MnFe2O4) dispersa em copolímeros de poli(ácido-metacrílico-co-estireno-co-divinilbenzeno), via polimerização em suspensão e em semi-suspensão. Foram variados os teores de ferrita (1% e 5%) e a concentração do agente de suspensão (0,2% e 5%). Além disso, foram testadas sínteses contendo a fase orgânica pré-polimerizada, e também a mistura da ferrita na fase orgânica (FO), antes da etapa da polimerização em suspensão. Os copolímeros foram analisados quanto as suas morfologias - microscopia óptica; propriedades magnéticas e distribuição das ferritas na matriz polimérica - VSM, SEM e EDS-X; propriedades térmicas TGA; concentração de metais presentes na matriz polimérica absorção atômica. As ferritas foram avaliadas quanto à cristalografia XRD. A matriz polimérica foi avaliada pela técnica de FTIR. As amostras que foram pré-polimerizadas e as que além de pré-polimerizadas foram misturadas as ferritas de manganês na FO, apresentaram as melhores propriedades magnéticas e uma incorporação maior da ferrita na matriz polimérica. Essas rotas sintéticas fizeram com que os copolímeros não apresentassem aglomeração, e também minimizou a presença de ferritas na superfície das microesferas. Em geral, todos os copolímeros obtidos apresentaram as características de materiais magneticamente doces além do superparamagnetismo. Foi constatado que o aumento da concentração do PVA e a diminuição da concentração da ferrita fazem com que os diâmetros das microesferas decresçam. Os resultados de TGA e DTG mostraram que ao misturar as ferritas na FO, a concentração de material magnético na matriz polimérica aumenta cerca de 10%. Entretanto, somente a amostra PM2550, pré-polimerizada e com as ferritas misturadas na FO (5% de ferrita e 0,2% de PVA), apresentou potencial aplicação. Isso porque as ferritas não ficaram expostas na superfície das microesferas, ou seja, o material magnético fica protegido de qualquer ação externa

Relevância:

80.00% 80.00%

Publicador:

Resumo:

研究了单体及粘结剂等成份对全息光致聚合物薄膜光存储性能的影响。在相同引发条件下.以丙烯酰胺作为单体时,光聚物的衍射效率明显高于以丙烯酸和N羟甲基丙烯酰胺作为单体时光聚物的衍射效率。向丙烯酰胺中加入少量N-羟甲基丙烯酰胺,可以改善膜表面的光学质量.降低散射光强度,并提高膜的保存时间。在聚乙烯醇膜中单体聚合程度明显优于在聚乙烯吡咯烷酮中的程度,在大分子量的聚乙烯醇中的衍射效率及感光灵敏度高于在小分子量中的衍射效率和感光灵敏度,而且大分子量的聚乙烯醇能够制备厚膜,这是实现全息海量存储的一个重要因素。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho foi feito um estudo sobre a preparação e caracterização de microesferas poliméricas à base de poli(ácido metacrílico-co-divinilbenzeno) por polimerização por precipitação. As partículas foram sintetizadas e analisadas em diferentes condições de reação. Partículas esféricas políméricas foram sintetizadas na faixa de 1,66 - 8,41 m, assim como partículas no estado de microgel. As partículas foram caracterizadas pelas técnicas de espalhamento de luz dinâmica (DLS), análise termogravimétrica (TGA), espectroscopia na região do infravermelho (FTIR), adsorção de nitrogênio pelos métodos BET (Brunauer, Emmett e Teller) e BJH (Barret, Joyner e Halenda), microscopia ótica, microscopia eletrônica de varredura, e testes de razão de inchamento. A análise das partículas foi feita para verificar a influência da mudança na composição de comonômeros, grau de reticulação, relação de monômeros totais/diluentes em massa/volume (g/100 mL), e quanto à relação volumétrica de diluentes. Verificou-se que houve um aumento no tamanho das partículas e da resistência térmica com a diminuição da fração molar de MAA (ácido metacrílico). Na preparação de partículas com fração molar de 50% de MAA, e relação volumétrica acetonitrila/tolueno de 75/25, quanto maior a relação de monômeros totais/diluentes (g/100 mL), maior o tamanho e o rendimento das partículas. Com a mudança da relação volumétrica de diluentes, houve mudança nas características de porosidade, tamanho das partículas, e grau de inchamento das partículas, sendo que na relação volumétrica acetonitrila/tolueno de 50/50, houve formação de microgel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biopolymers are generally considered an eco-friendly alternative to petrochemical polymers due to the renewable feedstock used to produce them and their biodegradability. However, the farming practices used to grow these feedstocks often carry significant environmental burdens, and the production energy can be higher than for petrochemical polymers. Life cycle assessments (LCAs) are available in the literature, which make comparisons between biopolymers and various petrochemical polymers, however the results can be very disparate. This review has therefore been undertaken, focusing on three biodegradable biopolymers, poly(lactic acid) (PLA), poly(hydroxyalkanoates) (PHAs), and starch-based polymers, in an attempt to determine the environmental impact of each in comparison to petrochemical polymers. Reasons are explored for the discrepancies between these published LCAs. The majority of studies focused only on the consumption of non-renewable energy and global warming potential and often found these biopolymers to be superior to petrochemically derived polymers. In contrast, studies which considered other environmental impact categories as well as those which were regional or product specific often found that this conclusion could not be drawn. Despite some unfavorable results for these biopolymers, the immature nature of these technologies needs to be taken into account as future optimization and improvements in process efficiencies are expected. © 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method was presented for the determination of testosterone, methyltestosterone and progesterone in liquid cosmetics by coupling polymer monolith microextraction (PMME) to high performance liquid chromatography with UV detection. A poly (methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column was selected as the extraction medium, which showed high extraction capacity towards these compounds. To achieve optimum extraction performance, several parameters relating to PMME were investigated, including extraction flow rate and pH value, inorganic salt and organic phase concentration of the sample matrix. By simple dilution with phosphate solution and filtering, the sample solution then could be directly injected into the device for extraction. The limits of detection of testosterone, methyltestosterone and progesterone were calculated to be 2, 3, 2, 8 and 4.6 mu g/L. Good linearity was achieved in the range of 10 to 1000 mu g/L with a linear coefficient. r value above 0. 996. Excellent method reproducibility was found by intra- and inter-day precisions, yielding the relative standard deviations of < 7. 7 % and < 7. 5 %, respectively. Recovery for them in the real samples was between 83% and 119%.