919 resultados para Poisson Mixed Model
Resumo:
The study was designed to investigate the impact of air pollution on monthly inhalation/nebulization procedures in Ribeirão Preto, São Paulo State, Brazil, from 2004 to 2010. To assess the relationship between the procedures and particulate matter (PM10) a Bayesian Poisson regression model was used, including a random factor that captured extra-Poisson variability between counts. Particulate matter was associated with the monthly number of inhalation/nebulization procedures, but the inclusion of covariates (temperature, precipitation, and season of the year) suggests a possible confounding effect. Although other studies have linked particulate matter to an increasing number of visits due to respiratory morbidity, the results of this study suggest that such associations should be interpreted with caution.
Resumo:
Abstract Background Disparities in utilization of oral healthcare services have been attributed to socioeconomic and individual behavioral factors. Parents’ socioeconomic status, demographics, schooling, and perceptions of oral health may influence their children’s use of dental services. This cross-sectional study assessed the relationships between socioeconomic and psychosocial factors and the utilization of dental health services by children aged 1–5 years. Methods Data were collected through clinical exams and a structured questionnaire administered during the National Day of Children’s Vaccination. A Poisson regression model was used to estimate prevalence ratios and 95% confidence intervals. Results Data were collected from a total of 478 children. Only 112 (23.68%) were found to have visited a dentist; 67.77% of those had seen the dentist for preventive care. Most (63.11%) used public rather than private services. The use of dental services varied according to parental socioeconomic status; children from low socioeconomic backgrounds and those whose parents rated their oral health as “poor” used dental services less frequently. The reason for visiting the dentist also varied with socioeconomic status, in that children of parents with poor socioeconomic status and who reported their child’s oral health as “fair/poor” were less likely to have visited the dentist for preventive care. Conclusion This study demonstrated that psychosocial and socioeconomic factors are important predictors of the utilization of dental care services.
Resumo:
[EN] Introduction: Candidemia in critically ill patients is usually a severe and life-threatening condition with a high crude mortality. Very few studies have focused on the impact of candidemia on ICU patient outcome and attributable mortality still remains controversial. This study was carried out to determine the attributable mortality of ICU-acquired candidemia in critically ill patients using propensity score matching analysis. Methods: A prospective observational study was conducted of all consecutive non-neutropenic adult patients admitted for at least seven days to 36 ICUs in Spain, France, and Argentina between April 2006 and June 2007. The probability of developing candidemia was estimated using a multivariate logistic regression model. Each patient with ICU-acquired candidemia was matched with two control patients with the nearest available Mahalanobis metric matching within the calipers defined by the propensity score. Standardized differences tests (SDT) for each variable before and after matching were calculated. Attributable mortality was determined by a modified Poisson regression model adjusted by those variables that still presented certain misalignments defined as a SDT > 10%. Results: Thirty-eight candidemias were diagnosed in 1,107 patients (34.3 episodes/1,000 ICU patients). Patients with and without candidemia had an ICU crude mortality of 52.6% versus 20.6% (P < 0.001) and a crude hospital mortality of 55.3% versus 29.6% (P = 0.01), respectively. In the propensity matched analysis, the corresponding figures were 51.4% versus 37.1% (P = 0.222) and 54.3% versus 50% (P = 0.680). After controlling residual confusion by the Poisson regression model, the relative risk (RR) of ICU- and hospital-attributable mortality from candidemia was RR 1.298 (95% confidence interval (CI) 0.88 to 1.98) and RR 1.096 (95% CI 0.68 to 1.69), respectively. Conclusions: ICU-acquired candidemia in critically ill patients is not associated with an increase in either ICU or hospital mortality.
Resumo:
The aim of this thesis is to apply multilevel regression model in context of household surveys. Hierarchical structure in this type of data is characterized by many small groups. In last years comparative and multilevel analysis in the field of perceived health have grown in size. The purpose of this thesis is to develop a multilevel analysis with three level of hierarchy for Physical Component Summary outcome to: evaluate magnitude of within and between variance at each level (individual, household and municipality); explore which covariates affect on perceived physical health at each level; compare model-based and design-based approach in order to establish informativeness of sampling design; estimate a quantile regression for hierarchical data. The target population are the Italian residents aged 18 years and older. Our study shows a high degree of homogeneity within level 1 units belonging from the same group, with an intraclass correlation of 27% in a level-2 null model. Almost all variance is explained by level 1 covariates. In fact, in our model the explanatory variables having more impact on the outcome are disability, unable to work, age and chronic diseases (18 pathologies). An additional analysis are performed by using novel procedure of analysis :"Linear Quantile Mixed Model", named "Multilevel Linear Quantile Regression", estimate. This give us the possibility to describe more generally the conditional distribution of the response through the estimation of its quantiles, while accounting for the dependence among the observations. This has represented a great advantage of our models with respect to classic multilevel regression. The median regression with random effects reveals to be more efficient than the mean regression in representation of the outcome central tendency. A more detailed analysis of the conditional distribution of the response on other quantiles highlighted a differential effect of some covariate along the distribution.
Resumo:
This work deals with the car sequencing (CS) problem, a combinatorial optimization problem for sequencing mixed-model assembly lines. The aim is to find a production sequence for different variants of a common base product, such that work overload of the respective line operators is avoided or minimized. The variants are distinguished by certain options (e.g., sun roof yes/no) and, therefore, require different processing times at the stations of the line. CS introduces a so-called sequencing rule H:N for each option, which restricts the occurrence of this option to at most H in any N consecutive variants. It seeks for a sequence that leads to no or a minimum number of sequencing rule violations. In this work, CS’ suitability for workload-oriented sequencing is analyzed. Therefore, its solution quality is compared in experiments to the related mixed-model sequencing problem. A new sequencing rule generation approach as well as a new lower bound for the problem are presented. Different exact and heuristic solution methods for CS are developed and their efficiency is shown in experiments. Furthermore, CS is adjusted and applied to a resequencing problem with pull-off tables.
Resumo:
Alpine snowbeds are habitats where the major limiting factors for plant growth are herbivory and a small time window for growth due to late snowmelt. Despite these limitations, snowbed vegetation usually forms a dense carpet of palatable plants due to favourable abiotic conditions for plant growth within the short growing season. These environmental characteristics make snowbeds particularly interesting to study the interplay of facilitation and competition. We hypothesised an interplay between resource competition and facilitation against herbivory. Further, we investigated whether these predicted neighbour effects were species-specific and/or dependent on ontogeny, and whether the balance of positive and negative plant–plant interactions shifted along a snowmelt gradient. We determined the neighbour effects by means of neighbour removal experiments along the snowmelt gradient, and linear mixed model analyses. The results showed that the effects of neighbour removal were weak but generally consistent among species and snowmelt dates, and depended on whether biomass production or survival was considered. Higher total biomass and increased fruiting in removal plots indicated that plants competed for nutrients, water, and light, thereby supporting the hypothesis of prevailing competition for resources in snowbeds. However, the presence of neighbours reduced herbivory and thereby also facilitated survival. For plant growth the facilitative effects against herbivores in snowbeds counterbalanced competition for resources, leading to a weak negative net effect. Overall the neighbour effects were not species-specific and did not change with snowmelt date. Our finding of counterbalancing effects of competition and facilitation within a plant community is of special theoretical value for species distribution models and can explain the success of models that give primary importance to abiotic factors and tend to overlook interrelations between biotic and abiotic effects on plants.
Resumo:
This study investigated the effects of different environmental treatments and personality types on aggression at mixing of newly weaned domestic piglets. From birth to weaning, 16 litters were housed with their dams in either barren (B) or larger, substrate-enriched (E) environments. At 15 days old, piglets were classified as 'high' (HR) or low resistant' (LR) in a manual restraint test (backtest), which is thought to identify proactive (HR) and reactive (LR) stress coping strategies that may reflect different personality types. At 30 days old, 128 piglets were weaned, relocated and mixed into 32 pens comprising two HR and two LR unfamiliar pigs, balanced for sex and weaning weight. Eight B and eight E groups changed environmental condition whereas the others remained in the same type of environment. Number and duration of fights. fight outcomes and unilateral fighting were scored for 5 h post-mixing and skin lesions were counted before and 5 h, 1 day and 2 days after mixing. On the day following weaning, fighting and also exploratory and oral manipulative behaviours were measured for 6 h. Generalized Linear Mixed Model analyses suggested interactions between pre-weaning environment, post-weaning environment and personality type. Overall, pre-weaning E pigs had longer fights at weaning and mixing (P=0.01) and fought for longer on the next day (P=0.02) than pre-weaning B pigs, and inflicted more skin lesions (P=0.02). Post-weaning enrichment did not affect fighting at mixing but reduced the time spent fighting the next day (P=0.03). Personality had subtle and environment-dependent effects on fighting, and influenced the "structure" rather than the amount of aggressive behaviour. HR pigs, for instance, bullied (i.e. chased surrendering pigs) more often (P=0.009) and their fighting behaviour was less affected by their relative body weight than that of LR pigs. Post-weaning E pigs showed relatively higher levels of exploratory behaviour (P=0.02) and less oral manipulative behaviour (P=0.04) than post-weaning B pigs. In particular, switching from a good quality environment (E) to a worse quality one (B) at weaning decreased exploratory behaviour on the next day, especially for LR pigs, who also tended to fight with and orally manipulate their pen mates more in that condition, and seemed to be more affected by a deterioration of the environment. Overall, pre-weaning enrichment increased aggression after weaning whereas post-weaning enrichment reduced it, and personality type related to some aspects of fighting behaviour. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β(1)-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8)). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6)). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.
A prospective study of the impact of air pollution on respiratory symptoms and infections in infants
Resumo:
Rationale: There is increasing evidence that short-term exposure to air pollution has a detrimental effect on respiratory health, but data from healthy populations, particularly infants, are scarce. Objectives: To assess the association of air pollution with frequency and severity of respiratory symptoms and infections measured weekly in healthy infants. Methods: In a prospective birth cohort of 366 infants of unselected mothers, respiratory health was assessed weekly by telephone interviews during the first year of life (19,106 total observations). Daily mean levels of particulate matter (PM10), nitrogen dioxide (NO2), and ozone (O3) were obtained from local monitoring stations. We determined the association of the preceding week's pollutant levels with symptom scores and respiratory tract infections using a generalized additive mixed model with an autoregressive component. In addition, we assessed whether neonatal lung function influences this association and whether duration of infectious episodes differed between weeks with normal PM10 and weeks with elevated levels. Measurements and Main Results: We found a significant association between air pollution and respiratory symptoms, particularly in the week after respiratory tract infections (risk ratio, 1.13 [1.02-1.24] per 10 μg/m(3) PM10 levels) and in infants with premorbid lung function. During times of elevated PM10 (>33.3 μg/m(3)), duration of respiratory tract infections increased by 20% (95% confidence interval, 2-42%). Conclusions: Exposure to even moderate levels of air pollution was associated with increased respiratory symptoms in healthy infants. Particularly in infants with premorbid lung function and inflammation, air pollution contributed to longer duration of infectious episodes with a potentially large socioeconomic impact.
Resumo:
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator gene (CFTR). Disease severity in CF varies greatly, and sibling studies strongly indicate that genes other than CFTR modify disease outcome. Syntaxin 1A (STX1A) has been reported as a negative regulator of CFTR and other ion channels. We hypothesized that STX1A variants act as a CF modifier by influencing the remaining function of mutated CFTR. We identified STX1A variants by genomic resequencing patients from the Bernese CF Patient Data Registry and applied linear mixed model analysis to establish genotype-phenotype correlations, revealing STX1A rs4363087 (c.467-38A>G) to significantly influence lung function. The same STX1A risk allele was recognized in the European CF Twin and Sibling Study (P=0.0027), demonstrating that the genotype-phenotype association of STX1A to CF disease severity is robust enough to allow replication in two independent CF populations. rs4363087 is in linkage disequilibrium to the exonic variant rs2228607 (c.204C>T). Considering that neither rs4363087 nor rs2228607 changes the amino-acid sequence of STX1A, we investigated their effects on mRNA level. We show that rs2228607 reinforces aberrant splicing of STX1A mRNA, leading to nonsense-mediated mRNA decay. In conclusion, we demonstrate the clinical relevance of STX1A variants in CF, and evidence the functional relevance of STX1A variant rs2228607 at molecular level. Our findings show that genes interacting with CFTR can modify CF disease progression.European Journal of Human Genetics advance online publication, 10 April 2013; doi:10.1038/ejhg.2013.57.
Resumo:
In epidemiological work, outcomes are frequently non-normal, sample sizes may be large, and effects are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. We focus on binary outcomes, with the risk surface a smooth function of space. We compare penalized likelihood models, including the penalized quasi-likelihood (PQL) approach, and Bayesian models based on fit, speed, and ease of implementation. A Bayesian model using a spectral basis representation of the spatial surface provides the best tradeoff of sensitivity and specificity in simulations, detecting real spatial features while limiting overfitting and being more efficient computationally than other Bayesian approaches. One of the contributions of this work is further development of this underused representation. The spectral basis model outperforms the penalized likelihood methods, which are prone to overfitting, but is slower to fit and not as easily implemented. Conclusions based on a real dataset of cancer cases in Taiwan are similar albeit less conclusive with respect to comparing the approaches. The success of the spectral basis with binary data and similar results with count data suggest that it may be generally useful in spatial models and more complicated hierarchical models.
Resumo:
This paper proposes a numerically simple routine for locally adaptive smoothing. The locally heterogeneous regression function is modelled as a penalized spline with a smoothly varying smoothing parameter modelled as another penalized spline. This is being formulated as hierarchical mixed model, with spline coe±cients following a normal distribution, which by itself has a smooth structure over the variances. The modelling exercise is in line with Baladandayuthapani, Mallick & Carroll (2005) or Crainiceanu, Ruppert & Carroll (2006). But in contrast to these papers Laplace's method is used for estimation based on the marginal likelihood. This is numerically simple and fast and provides satisfactory results quickly. We also extend the idea to spatial smoothing and smoothing in the presence of non normal response.
Resumo:
Multiple outcomes data are commonly used to characterize treatment effects in medical research, for instance, multiple symptoms to characterize potential remission of a psychiatric disorder. Often either a global, i.e. symptom-invariant, treatment effect is evaluated. Such a treatment effect may over generalize the effect across the outcomes. On the other hand individual treatment effects, varying across all outcomes, are complicated to interpret, and their estimation may lose precision relative to a global summary. An effective compromise to summarize the treatment effect may be through patterns of the treatment effects, i.e. "differentiated effects." In this paper we propose a two-category model to differentiate treatment effects into two groups. A model fitting algorithm and simulation study are presented, and several methods are developed to analyze heterogeneity presenting in the treatment effects. The method is illustrated using an analysis of schizophrenia symptom data.
Resumo:
Genome-wide association studies (GWAS) are used to discover genes underlying complex, heritable disorders for which less powerful study designs have failed in the past. The number of GWAS has skyrocketed recently with findings reported in top journals and the mainstream media. Mircorarrays are the genotype calling technology of choice in GWAS as they permit exploration of more than a million single nucleotide polymorphisms (SNPs)simultaneously. The starting point for the statistical analyses used by GWAS, to determine association between loci and disease, are genotype calls (AA, AB, or BB). However, the raw data, microarray probe intensities, are heavily processed before arriving at these calls. Various sophisticated statistical procedures have been proposed for transforming raw data into genotype calls. We find that variability in microarray output quality across different SNPs, different arrays, and different sample batches has substantial inuence on the accuracy of genotype calls made by existing algorithms. Failure to account for these sources of variability, GWAS run the risk of adversely affecting the quality of reported findings. In this paper we present solutions based on a multi-level mixed model. Software implementation of the method described in this paper is available as free and open source code in the crlmm R/BioConductor.