829 resultados para Plastic pipes
Resumo:
The growth response of F1 hybrid fry of female Heterobranchus longifilis and male Clarias gariepinus were investigated under laboratory conditions in glass aquaria glass tanks and plastic basins. The larvae were produced artificially after inducement with Ovarptim. The hatching percentage was very high. Weekly mean length and weight were monitored for 6 weeks. The average length increase was higher in aquaria glass tanks than in plastic basins. However, there were depressed and irregular weight increases in both types of rearing troughs while significant weight increase (P<0.05) was recorded at week 6 in the plastic basin. Generally, the growth rate and survival in both containers were not significantly different
Resumo:
Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement.
During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.
Resumo:
A dissolved oxygen sensor made of plastic optical fiber as the substrate and dichlorotris (1, 10-phenanthroline) ruthenium as a fluorescence indicator is studied. Oxygen quenching characteristics of both intensity and phase were measured; the obtained characteristics showed deviation from the linear relation described by the Stern-Volmer equation. A two-layer model is proposed to explain the deviation, and main parameters can be deduced with the model. (C) 2009 Optical Society of America
Resumo:
Measurements of friction and heat transfer coefficients were obtained with dilute polymer solutions flowing through electrically heated smooth and rough tubes. The polymer used was "Polyox WSR-301", and tests were performed at concentrations of 10 and 50 parts per million. The rough tubes contained a close-packed, granular type of surface with roughness-height-to-diameter ratios of 0.0138 and 0.0488 respectively. A Prandtl number range of 4.38 to 10.3 was investigated which was obtained by adjusting the bulk temperature of the solution. The Reynolds numbers in the experiments were varied from =10,000 (Pr= 10.3) to 250,000 (Pr= 4.38).
Friction reductions as high as 73% in smooth tubes and 83% in rough tubes were observed, accompanied by an even more drastic heat transfer reduction (as high as 84% in smooth tubes and 93% in rough tubes). The heat transfer coefficients with Polyox can be lower for a rough tube than for a smooth one.
The similarity rules previously developed for heat transfer with a Newtonian fluid were extended to dilute polymer solution pipe flows. A velocity profile similar to the one proposed by Deissler was taken as a model to interpret the friction and heat transfer data in smooth tubes. It was found that the observed results could be explained by assuming that the turbulent diffusivities are reduced in smooth tubes in the vicinity of the wall, which brings about a thickening of the viscous layer. A possible mechanism describing the effect of the polymer additive on rough pipe flow is also discussed.
Resumo:
Restrições de espaço e altura são frequentemente impostas às edificações residenciais, comerciais, industriais, depósitos e galpões com um ou diversos pavimentos em função de aspectos de regulamentos regionais, técnicos, econômicos ou ainda de natureza estética. A fim de proporcionar a passagem de tubulações e dutos de grande diâmetro sob vigas de aço, grandes alturas são normalmente requeridas, demandando por vezes, magnitudes de altura inviáveis entre pavimentos de edificações. Diversas soluções estruturais podem ser utilizadas para equacionar tais obstáculos, onde dentre outras, pode-se citar as vigas com inércia variável, stub-girders, treliças mistas, vigas misuladas e vigas com uma ou múltiplas aberturas na alma com geometrias variadas. No que tange às vigas casteladas, solução estrutural pautada neste estudo, a estabilidade é sempre um motivo de preocupação tipicamente durante a construção quando os contraventamentos laterais ainda não estão instalados. De qualquer forma, o comprimento destravado em geral alcançado pelos vãos destas vigas, são longos o suficiente para que a instabilidade ocorra. Todavia, o acréscimo substancial da resistência à flexão de tais membros devido ao aumento da altura oriundo de seu processo fabril em relação ao perfil matriz, aliada a economia de material e utilidade fim de serviço, garante a atratividade no aproveitamento destas, para grandes vãos junto aos projetistas. Não obstante, este aumento proporcional no comprimento dos vãos faz com que a instabilidade lateral ganhe importância especial. Neste contexto, o presente trabalho tem por objetivo desenvolver um modelo numérico que permita a realização de uma avaliação paramétrica a partir da calibração do modelo com resultados experimentais, efetuar a análise do comportamento de vigas casteladas e verificar seus mecanismos de falha, considerando comportamento elasto-plástico, além das não-linearidades geométricas. Também é objetivo deste trabalho, avaliar, quantificar e determinar a influência das diferenças geométricas características das vigas casteladas em relação às vigas maciças com as mesmas dimensões, analisando e descrevendo o comportamento estrutural destas vigas de aço para diversos comprimentos de vãos. A metodologia empregada para tal estudo baseou-se em uma análise paramétrica com o auxílio do método numérico dos elementos finitos.