1000 resultados para Plantas - Efeitos da radiação solar
Resumo:
Evaluated statistical equations estimates (based on radiometric fractions) of the hourly diffuse radiation incident on inclined surfaces for the North to 12.85, 22.85 and 32.85°, the climate and geographical conditions of Botucatu, SP. The database was generated from April/1998 to December/2007, with measures in the three tilted surfaces in different periods, but concomitant to the horizontal plane. In the validation of the equations were used indicative statistics MBE (mean absolute error), RMSE (square root mean square error) and index adjustment (d) for three inclinations and conditions of sky coverage. The increased angle of inclination of the surface led to increased scattering of hourly values for the coefficient of atmospheric transmissivity of diffuse radiation for inclined and horizontal surfaces. Estimates of diffuse radiation on the basis of hourly tilted horizontal global radiation occur for quadratic polynomial models, which adjust K'Dβ maximum values of between 0.14 and 0.30 for winter and summer when KTH varies between 0.40 and 0.66, indicating that energy, the highest values of diffuse radiation occur in partly cloudy sky conditions and / or partially open. The increase in atmospheric transmissivity decreases the performance of annual and monthly equations at all inclinations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work was developed from the study by Araujo, R.A.N. et al. Stability regions around the components of the triple system 2001 SN263. (Monthly Notices Of The Royal Astronomical Society, 2012, v. 423(4), 3058-3073 p.) where it was studied the stable and unstable regions system (2001 SN263), which is a triple asteroid system, and these are celestial orbiting our sun. Being close to the Earth is characterized as NEA (Near-Earth Asteroids), asteroids and which periodically approach the Earth's orbit, given that there is great interest in the study and exploitation of these objects, it is the key can carry features that contribute to better understand the process of formation of our solar system. Study the dynamics of bodies that govern those systems proves to be greatly attractive because of the mutual gravitational perturbation of bodies and also by external disturbances. Recently, NEA 2001 SN263 was chosen as a target of Aster mission where a probe is sent for this triple system, appearing therefore the need for obtaining information for characterizing stable regions internal and external to the system, with respect to the effects of radiation pressure. First, this study demonstrated that the integrator used showed satisfactory results of the orbital evolution of bodies in accordance with previous studies and also the characterization of stable and unstable regions brought similar results to the study by Araujo et al. (2012). From these results it was possible to carry out the implementation of the radiation pressure in the system in 2001 SN263, in a region close to the central body, where the simulations were carried out, which brought as a result that the regions before being characterized as stable in unstable true for small particles size from 1 to 5 micrometers. So the next orbital region to the central body and the ... ( Complete abstract click electronic access below)
Resumo:
This work was developed from the study by Araujo, R.A.N. et al. Stability regions around the components of the triple system 2001 SN263. (Monthly Notices Of The Royal Astronomical Society, 2012, v. 423(4), 3058-3073 p.) where it was studied the stable and unstable regions system (2001 SN263), which is a triple asteroid system, and these are celestial orbiting our sun. Being close to the Earth is characterized as NEA (Near-Earth Asteroids), asteroids and which periodically approach the Earth's orbit, given that there is great interest in the study and exploitation of these objects, it is the key can carry features that contribute to better understand the process of formation of our solar system. Study the dynamics of bodies that govern those systems proves to be greatly attractive because of the mutual gravitational perturbation of bodies and also by external disturbances. Recently, NEA 2001 SN263 was chosen as a target of Aster mission where a probe is sent for this triple system, appearing therefore the need for obtaining information for characterizing stable regions internal and external to the system, with respect to the effects of radiation pressure. First, this study demonstrated that the integrator used showed satisfactory results of the orbital evolution of bodies in accordance with previous studies and also the characterization of stable and unstable regions brought similar results to the study by Araujo et al. (2012). From these results it was possible to carry out the implementation of the radiation pressure in the system in 2001 SN263, in a region close to the central body, where the simulations were carried out, which brought as a result that the regions before being characterized as stable in unstable true for small particles size from 1 to 5 micrometers. So the next orbital region to the central body and the ... ( Complete abstract click electronic access below)
Resumo:
Nos países em desenvolvimento, como o Brasil, a secagem de produtos agrícolas com uso de secador solar representa uma alternativa promissora de baixo custo, reduzindo perdas e agregando valor aos produtos. Porém, devido à natureza periódica da radiação solar e das condições do tempo, nem sempre é viável sua utilização. Dessa forma, o objetivo do trabalho foi a modelagem de um sistema auxiliar de armazenagem de energia térmica (SAET) em um secador solar, cuja finalidade é armazenar energia durante o dia para ser utilizada conforme necessário. Com base em registros de temperatura e umidade relativa, ambas do ar, de um secador solar, foi feito um estudo da termodinâmica dos processos envolvidos, a fim de propor meios para o dimensionamento do SAET. Foram explorados a estimativa do fluxo de massa de ar no secador, a modelagem da temperatura em função da radiação, e o dimensionamento para diferentes modos de operação do SAET, considerando o sistema ideal. Este dimensionamento tratou tanto do caso de fornecimento contínuo de fluxo de água preaquecida, como de uso de automação para controlar o fluxo. A estimativa de fluxo de ar no secador se aproximou de valores típicos encontrados na literatura. O dimensionamento do sistema, embora considerado ideal, mostra que a utilização do SAET melhora o desempenho do secador, servindo como parâmetro para melhor compreender o comportamento das variáveis durante seu funcionamento.
Resumo:
O auto sombreamento das folhas posicionadas nas porções inferiores do dossel de plantas pode limitar a produtividade em cultivos tutorados. Assim, a produtividade do tomateiro pode ser aumentada por meio da suplementação luminosa posicionada no interior do dossel, técnica conhecida como interlighting. O sistema de condução do tomateiro também interfere na distribuição da radiação solar, além de afetar os tratos culturais, a competição intra e entre plantas e a relação entre as partes vegetativas e reprodutivas. Desta forma, o objetivo deste trabalho foi avaliar a influência do sistema de condução de minitomate cultivar \'Sweet Grape\' em diferentes números de hastes por planta (duas, três e quatro hastes) e da suplementação luminosa com módulos de LED na produtividade e qualidade dos frutos, na eficiência do uso de água e nutrientes, além da morfologia das plantas e fatores relacionados ao manejo cultural, em ambiente protegido nas condições climáticas do sudeste brasileiro. Ao longo do ciclo de cultivo foram avaliados os seguintes parâmetros: volume irrigado, pH, condutividade elétrica, porcentagem e volume da solução drenada pelos vasos. As colheitas foram realizadas semanalmente, a partir de 90 dias após o transplante. Os frutos colhidos foram classificados, contados e pesados para a obtenção do número e massa de frutos grandes, médios, pequenos, comercial, não comercial e total. Amostras de frutos e tecidos foliares foram coletadas em cinco períodos e avaliadas quanto ao teor de sólidos solúveis, pH, acidez titulável e concentração de ácido ascórbico nos frutos e teor de nutrientes nas folhas. Além disso, ao final do ciclo cultural, foram realizadas as medições dos seguintes parâmetros morfológicos nas plantas: comprimento de hastes, número de cachos normais e bifurcados por hastes e diâmetro apical, mediano e basal das hastes. A suplementação luminosa apresentou aumento no número e na massa de frutos grandes e médios, elevando a produtividade total em 12%. Plantas com duas e três hastes apresentaram maior acúmulo de massa total de frutos, porém plantas com três hastes apresentaram maior massa de frutos não comerciais, com redução na massa de frutos comerciais. A maior eficiência no uso de água e nutrientes foi alcançada em plantas cultivadas com duas hastes. Plantas com quatro hastes demandaram mais solução nutritiva comparada às plantas com duas e três hastes. Esta maior demanda de solução, acarretou em aumento da condutividade elétrica da solução drenada. Plantas com quatro hastes apresentaram maiores teores de sólidos solúveis nos frutos. A suplementação luminosa também resultou em aumento do teor de sólidos solúveis e ligeiro aumento no teor de ácido ascórbico nos frutos. A suplementação luminosa favoreceu o acúmulo de nitrogênio, fósforo e potássio nas folhas do tomateiro. Desta forma, conclui-se que a suplementação luminosa é uma estratégia de manejo tecnicamente viável nas condições climática estudada. O sistema de condução de haste afeta a produtividade e qualidade dos frutos do tomateiro. Plantas com duas hastes além de apresentar maior produtividade de frutos comerciais, mostrou-se a estratégia mais eficiente no uso da água e nutrientes.
Resumo:
Este trabalho dimensionou um receptor de cavidade para uso como reator químico de um ciclo de conversão de energia solar para energia química. O vetor energético proposto é o hidrogênio. Isso implica que a energia solar é concentrada em um dispositivo que absorve a radiação térmica e a transforma em energia térmica para ativar uma reação química endotérmica. Essa reação transforma o calor útil em gás hidrogênio, que por sua vez pode ser utilizado posteriormente para geração de outras formas de energia. O primeiro passo foi levantar os pares metal/óxido estudados na literatura, cuja finalidade é ativar um ciclo termoquímico que possibilite produção de hidrogênio. Esses pares foram comparados com base em quatro parâmetros, cuja importância determina o dimensionamento de um receptor de cavidade. São eles: temperatura da reação; estado físico de reagentes e produtos; desgaste do material em ciclos; taxa de reação de hidrólise e outros aspectos. O par escolhido com a melhor avaliação no conjunto dos parâmetros foi o tungstênio e o trióxido de tungstênio (W/WO3). Com base na literatura, foi determinado um reator padrão, cujas características foram analisadas e suas consequências no funcionamento do receptor de cavidade. Com essa análise, determinaram-se os principais parâmetros de projeto, ou seja, a abertura da cavidade, a transmissividade da janela, e as dimensões da cavidade. Com base nos resultados anteriores, estabeleceu-se um modelo de dimensionamento do sistema de conversão de energia solar em energia útil para um processo químico. Ao se analisar um perfil de concentração de energia solar, calculou-se as eficiências de absorção e de perdas do receptor, em função da área de abertura de um campo de coleta de energia solar e da radiação solar disponível. Esse método pode ser empregado em conjunto com metodologias consagradas e dados de previsão de disponibilidade solar para estudos de concentradores de sistemas de produção de hidrogênio a partir de ciclos termoquímicos.
Resumo:
Instrumentation is a tool of fundamental importance for research in several areas of human knowledge. Research projects are often unfeasible when data cannot be obtained due to lack of instruments, especially due to impor ting difficulties and the high costs there associated. Thus, in order to collaborate with the enhancement of a national technology, a multiband hand - held sun p hotometer (FSM - 4) was developed to operate in the 500 nm, 670 nm, 870 nm and 940 nm bands. In the 500 nm, 670 nm and 870 nm bands aerosols are monitored for evaluation of the AOD (Aerosol Optical Depth), and the PWC (Precipitable Water Column) is evaluated in the 940 nm band. For the development of the mech anical and electronic parts for the FSM - 4, th e materials and componen ts should combine low cost and quality of the data collected. The calibration process utilized the Langley method (ML) and Modified Langley Method (MLM). These methods are usually applied at high altitudes in order to provide atmosp heric optical stability. This condition however can be found in low height sites as shown in the research by Liu et al. (2010). Thus, for calibration of the FSM - 4, we investigated the atmospher ic optical stability utilizing the ML and MLM at a site in the cit y of Caicó / RN, located in the s emiarid region in northeastern Brazil. This site lies in a region far aw ay from large urban centers and activities generating anthropogenic atmospheric pollution. Data for calibration of the prototype were collected usin g the FSM - 4 in two separate operations during the dry season, one in December 2012 and another in September 2013. The methodologies showed optical atmospheric instability in the studied region through the dispersion of the values obtained for the calibrati on constant. This dispersion is affected by the variability of AOD and PWC during the appl ication of the above mentioned methods . As an alternative to the descr ibed sun photometer calibration , a short study was performed using the sun photometer worldwide network AERONET/NASA (AERsol RObotic NETwork – US Space Agency), installed in Petrolina / PE in Brazil. Data were collected for three days utilizing the AERONET instruments and the FSM - 4, operating simultaneously on the same site. By way of the ML and MLM techniques, convergent test values were obtained for the calibration constants, despite the low amount of data collected. This calibration transfer methodology proved to be a viable alternative to the FSM - 4 calibration .
Resumo:
The growing need for food is something that worries the world, which has a population that is growing at a geometric progression while their resources grows at an arithmetic progression. To alleviate this problem there are some proposals, including increased food production or reduce waste thereof. Many studies have been conducted in the world in order to reduce food waste that can reach 40% of production, depending on the region. For this purpose techniques are used to retard degradation of foods, including drying. This paper presents a design of a hybrid fruit dryer that uses solar energy and electric energy with automation of the process. To accomplish drying tests were chosen Typical fruits with good acceptability as processed fruits. During the experiments were measured temperature values at different points. Were also measured humidity values, solar radiation and mass. A data acquisition system was built using a Arduino for obtaining temperatures. The data were sent to a program named Secador de Frutas, done in this work, to plot the same. The volume of the drying chamber was 423 liters and despite the unusual size test using mirrors to increase the incidence of direct radiation, showed that the drier is competitive when compared with other solar dryers produced in Hydraulic Machines and Solar Energy Laboratory (LMHES ) UFRN. The drier has been built at a cost of 3 to 5 times smaller than industrial dryers that operate with the same load of fruit. And the energy cost to produce dried fruits was more feasible compared with such dryers that use LPG as an energy source. However, the drying time was longer.
Resumo:
The variability / climate change has generated great concern worldwide, is one of the major issues as global warming, which can is affecting the availability of water resources in irrigated perimeters. In the semiarid region of Northeastern Brazil it is known that there is a predominance of drought, but it is not enough known about trends in climate series of joint water loss by evaporation and transpiration (evapotranspiration). Therefore, this study aimed to analyze whether there is increase and / or decrease evidence in the regime of reference evapotranspiration (ETo), for the monthly, annual and interdecadal scales in irrigated polo towns of Juazeiro, BA (9 ° 24'S, 40 ° 26'W and 375,5m) and Petrolina, PE (09 ° 09'S, 40 ° 22'W and 376m), which is the main analysis objective. The daily meteorological data were provided by EMBRAPA Semiárido for the period from 01.01.1976 to 31.12.2014, estimated the daily ETo using the standard method of Penman-Monteith (EToPM) parameterized by Smith (1991). Other methods of more simplified estimatives were calculated and compared to EToPM, as the ones following: Solar Radiation (EToRS), Linacre (EToL), Hargreaves and Samani (EToHS) and the method of Class A pan (EToTCA). The main statistical analysis were non-parametric tests of homogeneity (Run), trend (Mann-kendall), magnitude of the trend (Sen) and early trend detection (Mann-Whitney). The statistical significance adopted was 5 and / or 1%. The Analysis of Variance - ANOVA was used to detect if there is a significant difference in mean interdecadal mean. For comparison between the methods of ETo, it were used the correlation test (r), the Student t test and Tukey levels of 5% significance. Finally, statistics Willmott et al. (1985) statistics was used to evaluate the concordance index and performance of simplified methods compared to the standard method. It obtained as main results that there was a decrease in the time series of EToPM in irrigated areas of Juazeiro, BA and Petrolina, PE, significant respectively at 1 and 5%, with an annual magnitude of -14.5 mm (Juazeiro) and -7.7 mm (Petrolina) and early trend in 1996. The methods which had better for better agreement with EToPM were EToRS with very good performance, in both locations, followed by the method of EToL with good performance (Juazeiro) and median (Petrolina). EToHS had the worst performance (bad) for both locations. It is suggested that this decrease of EToPM can be associated with the increase in irrigated agricultural areas and the construction of Sobradinho lake upstream of the perimeters.
Resumo:
In this work, the oxidation and mineralization of paracetamol, based in an advanced oxidative process promoted by heterogeneous photocatalysis, was evaluated. The action of two photocatalysts (titanium dioxide, and a composite based on the association between titanium dioxide and zinc phthalocyanine dye) was studied. First of all, experiments in laboratory scale were performed using as radiation font a 400 W high pressure mercury lamp. The mineralization of paracetamol, promoted by both photocatalysts, was evaluated working with 4L of solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. To find the best experimental conditions, the influence of hydrogen peroxide concentration and pH was evaluated for the reactions. The best results for the reactions in laboratory scale was obtained using 33,00 mg L-1 of hydrogen peroxide in natural pH (6,80). Under these conditions, 100% oxidation was reached in just 40 minutes of reaction using TiO2 P25, while the mineralization was 78%. Using the composite, the mineralization was 63% in 2 hours of reaction and a oxidation of almost 100% was reached after 60 minutes. A CPC reactor (compound parabolic concentrator) was employed in the expanded work scale, using the sun as irradiation source. In this case the experiments were performed using 50 L of aqueous solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. The assays were done at pH 3,00 and natural pH (6,80). The used concentration of hydrogen peroxide was 33,00 mg L-1, adopted after laboratory scale studies. The reaction at pH 3,00 shows to be more advantageous, since under natural pH (6,80), the use of deionized water was necessary to prepare the solutions, probably because the deleterious action of carbonate ions, known hydroxyl radical scavengers. Using solar irradiation, the reaction mediated by the composite was more efficient when compared with the assays under laboratory scale since the composite presents the advantage of promoting a better use of visible radiation. Under these conditions, the mineralization increased from 40% to 56% under pH 3,00. At natural pH the oxidation occurred more slowly and the mineralization decreased from 56% to 50%. Thus, the use of pH 3,00 will be more interesting in real scale applications, even if it is necessary the pH correction before the discard of the treated effluent to the environment.
Resumo:
Informação Geográfica (SIG) ao estudo das energias renováveis, tendo como caso avaliar o potencial solar na ilha de São Vicente do arquipélago de Cabo Verde. A energia do sol é a principal fonte de energia renovável, e está disponível em quase todas as regiões do planeta. Quantificar o potencial energético solar de um lugar ou região é indispensável, para avaliar as potencialidades de produção de energia fotovoltaica. Outro fator importante prende-se com ordenamento territorial associado à exploração desses recursos energéticos, pelo que devem ser avaliadas as condições técnicas, ambientais e económicas, quando se pretende instalar parques para a produção de energia fotovoltaica. Assim, neste trabalho foram aplicadas as ferramentas SIG, para quantificar a radiação solar mensal e anual da ilha de São Vicente, arquipélago de Cabo Verde, através do modelo Solar Analyst. Numa segunda fase, aplicou-se a técnica de análise multicritério em combinação com os SIGs para definir as áreas mais favoráveis para a instalação de parques de produção de energia elétrica a partir da energia solar. Para o cálculo da radiação solar na ilha de São de Vicente, utilizou-se o modelo digital de terreno (MDT) e a latitude da ilha como parâmetros de entrada ao modelo. Para a análise multicritério definiram-se um conjunto de critérios que devem ser considerados na implementação de parques solares, nomeadamente, a disponibilidade de radiação solar existente na área, a distância à rede de transporte de energia elétrica e à rede viária, o declive do terreno, o uso e ocupação do solo e a proximidade às linhas de água. Para auxiliar na atribuição dos pesos aos critérios utilizados na análise aplicou-se a método Analytic Hierarchy Process (AHP). As áreas resultantes do processo da análise multicritério, foram confrontadas com a Carta de Condicionantes do esquema regional de ordenamento da ilha de São Vicente, aferindo a conformidade das propostas e reajustes subsequentes, de modo a obter os resultados finais.
Resumo:
v. 46, n. 2, p. 140-148, apr./jun. 2016.
Resumo:
The PhD project addresses the potential of using concentrating solar power (CSP) plants as a viable alternative energy producing system in Libya. Exergetic, energetic, economic and environmental analyses are carried out for a particular type of CSP plants. The study, although it aims a particular type of CSP plant – 50 MW parabolic trough-CSP plant, it is sufficiently general to be applied to other configurations. The novelty of the study, in addition to modeling and analyzing the selected configuration, lies in the use of a state-of-the-art exergetic analysis combined with the Life Cycle Assessment (LCA). The modeling and simulation of the plant is carried out in chapter three and they are conducted into two parts, namely: power cycle and solar field. The computer model developed for the analysis of the plant is based on algebraic equations describing the power cycle and the solar field. The model was solved using the Engineering Equation Solver (EES) software; and is designed to define the properties at each state point of the plant and then, sequentially, to determine energy, efficiency and irreversibility for each component. The developed model has the potential of using in the preliminary design of CSPs and, in particular, for the configuration of the solar field based on existing commercial plants. Moreover, it has the ability of analyzing the energetic, economic and environmental feasibility of using CSPs in different regions of the world, which is illustrated for the Libyan region in this study. The overall feasibility scenario is completed through an hourly analysis on an annual basis in chapter Four. This analysis allows the comparison of different systems and, eventually, a particular selection, and it includes both the economic and energetic components using the “greenius” software. The analysis also examined the impact of project financing and incentives on the cost of energy. The main technological finding of this analysis is higher performance and lower levelized cost of electricity (LCE) for Libya as compared to Southern Europe (Spain). Therefore, Libya has the potential of becoming attractive for the establishment of CSPs in its territory and, in this way, to facilitate the target of several European initiatives that aim to import electricity generated by renewable sources from North African and Middle East countries. The analysis is presented a brief review of the current cost of energy and the potential of reducing the cost from parabolic trough- CSP plant. Exergetic and environmental life cycle assessment analyses are conducted for the selected plant in chapter Five; the objectives are 1) to assess the environmental impact and cost, in terms of exergy of the life cycle of the plant; 2) to find out the points of weakness in terms of irreversibility of the process; and 3) to verify whether solar power plants can reduce environmental impact and the cost of electricity generation by comparing them with fossil fuel plants, in particular, Natural Gas Combined Cycle (NGCC) plant and oil thermal power plant. The analysis also targets a thermoeconomic analysis using the specific exergy costing (SPECO) method to evaluate the level of the cost caused by exergy destruction. The main technological findings are that the most important contribution impact lies with the solar field, which reports a value of 79%; and the materials with the vi highest impact are: steel (47%), molten salt (25%) and synthetic oil (21%). The “Human Health” damage category presents the highest impact (69%) followed by the “Resource” damage category (24%). In addition, the highest exergy demand is linked to the steel (47%); and there is a considerable exergetic demand related to the molten salt and synthetic oil with values of 25% and 19%, respectively. Finally, in the comparison with fossil fuel power plants (NGCC and Oil), the CSP plant presents the lowest environmental impact, while the worst environmental performance is reported to the oil power plant followed by NGCC plant. The solar field presents the largest value of cost rate, where the boiler is a component with the highest cost rate among the power cycle components. The thermal storage allows the CSP plants to overcome solar irradiation transients, to respond to electricity demand independent of weather conditions, and to extend electricity production beyond the availability of daylight. Numerical analysis of the thermal transient response of a thermocline storage tank is carried out for the charging phase. The system of equations describing the numerical model is solved by using time-implicit and space-backward finite differences and which encoded within the Matlab environment. The analysis presented the following findings: the predictions agree well with the experiments for the time evolution of the thermocline region, particularly for the regions away from the top-inlet. The deviations observed in the near-region of the inlet are most likely due to the high-level of turbulence in this region due to the localized level of mixing resulting; a simple analytical model to take into consideration this increased turbulence level was developed and it leads to some improvement of the predictions; this approach requires practically no additional computational effort and it relates the effective thermal diffusivity to the mean effective velocity of the fluid at each particular height of the system. Altogether the study indicates that the selected parabolic trough-CSP plant has the edge over alternative competing technologies for locations where DNI is high and where land usage is not an issue, such as the shoreline of Libya.