987 resultados para Piezoelectric actuators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the development of miniature McKibben actuators. Due to their compliancy, high actuation force, and precision, these actuators are on the one hand interesting for medical applications such as prostheses and instruments for surgery and on the other hand for industrial applications such as for assembly robots. During this research, pneumatic McKibben actuators have been miniaturized to an outside diameter of 1.5 mm and a length ranging from 22 mm to 62 mm. These actuators are able to achieve forces of 6 N and strains up to about 15% at a supply pressure of 1 MPa. The maximal actuation speed of the actuators measured during this research is more than 350 mm/s. Further, positioning experiments with a laser interferometer and a PI controller revealed that these actuators are able to achieve sub-micron positioning resolution. © 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future microrobotic applications require actuators that can generate a high actuation force in a limited volume. Up to now, little research has been performed on the development of pneumatic or hydraulic microactuators, although they offer great prospects in achieving high force densities. In addition, large actuation strokes and high actuation speeds can be achieved by these actuators. This paper describes a fabrication process for piston-cylinder pneumatic and hydraulic actuators based on etching techniques, UV-definable polymers, and low-temperature bonding. Prototype actuators with a piston area of 0.15 mm2 have been fabricated in order to validate the production process. These actuators achieve actuation forces of more than 0.1 N and strokes of 750 μm using pressurized air or water as driving fluid. © 2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future microrobotic applications require actuators that can generate a high actuation force and stroke in a limited volume. Up to now, little research has been performed on the development of pneumatic and hydraulic microactuators, although they offer great prospects in achieving high force densities. One of the main technological barriers in the development of these actuators is the fabrication of powerful seals with low leakage. This paper presents a seal technology for linear fluidic microactuators based on ferrofluids. A design and simulation method for these seals has been developed and validated by measurements on miniaturized actuator prototypes. These actuators have an outside diameter of 2 mm, a length of 13 mm and have been tested using both pressurized air and water. Our current actuator prototypes are able to operate at pressures up to 1.6 MPa without leakage. At these pressures, forces up to 0.65 N have been achieved. The stroke of the actuators is 10 mm. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Film bulk acoustic resonators (FBARs) and solidly mounted resonators (SMRs) have the potential to significantly improve upon the sensitivity and minimum detection limit of traditional gravimetric sensors based on quartz crystal microbalances (QCMs) and surface acoustic wave resonators (SAWs). To date, neither FBAR nor SMR devices have been demonstrated to be superior to the other; hence the choice between them depends primarily on the users' ability to design/fabricate membranes and/or Bragg reflectors. In this work, it is shown that identically designed FBAR and SMR devices resonating at the same frequency exhibit different responsivities to mass loadings, Rm, and that the SMRs are less responsive than the FBARs. For the specific device design and resonant frequency (~2 GHz) of the resonators presented here, the FBARs' mass responsivity is ~20% greater than that of the SMRs', and although this value is not universal for all possible device designs, it clearly shows that FBAR devices should be favoured over SMRs in gravimetric sensing applications where the FBARs' fragility is not an issue. Numerical calculations based on Mason's model offer an insight into the physical mechanisms behind the greater FBARs responsivity, and it was shown that the Bragg reflector has an effect on the acoustic load at one of the facets of the piezoelectric films which is in turn responsible for the SMRs' lower responsivity to mass loadings. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated whether inkjet printing technology can be extended to print cells of the adult rat central nervous system (CNS), retinal ganglion cells (RGC) and glia, and the effects on survival and growth of these cells in culture, which is an important step in the development of tissue grafts for regenerative medicine, and may aid in the cure of blindness. We observed that RGC and glia can be successfully printed using a piezoelectric printer. Whilst inkjet printing reduced the cell population due to sedimentation within the printing system, imaging of the printhead nozzle, which is the area where the cells experience the greatest shear stress and rate, confirmed that there was no evidence of destruction or even significant distortion of the cells during jet ejection and drop formation. Importantly, the viability of the cells was not affected by the printing process. When we cultured the same number of printed and non-printed RGC/glial cells, there was no significant difference in cell survival and RGC neurite outgrowth. In addition, use of a glial substrate significantly increased RGC neurite outgrowth, and this effect was retained when the cells had been printed. In conclusion, printing of RGC and glia using a piezoelectric printhead does not adversely affect viability and survival/growth of the cells in culture. Importantly, printed glial cells retain their growth-promoting properties when used as a substrate, opening new avenues for printed CNS grafts in regenerative medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a silicon optical phase shifter based on photoelastic effect controlled by a piezoelectric thin film. The hysteresis behavior of the piezoelectric response shows potential application as bistable device independent of the optical intensity. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a silicon optical phase shifter based on photoelastic effect controlled by a piezoelectric thin film. The hysteresis behavior of the piezoelectric response shows potential application as bistable device independent of the optical intensity. © OSA 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate bistability in a submicron silicon optical phase shifter based on the photoelastic effect. The strain magnitude is electrically controlled by a piezoelectric thin film placed on top of the device. The hysteresis behavior of the piezoelectric response shows potential application as bistable device independent of the optical intensity. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compliant pneumatic actuators have attracted the interests of the robotics community especially for applications where large strokes are needed in delicate environments. This paper introduces a new type of compliant actuator that generates a large twisting deformation upon pressurization. This deformation is similar to torsion in solid mechanics, and can be characterized by a twisting angle along the longitudinal axis of the actuator. To produce prototype actuators, a new fabrication process is developed that uses soft lithography. With this process, prototype actuators with a width of 7mm and a thickness of 0.65mm have been produced that exhibit a twisting rotation of 6.5 degrees per millimeter length at a pressure of 178kPa. Besides design, fabrication and characterization, this paper will go into detail on stroke optimization. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-consistent solution of conduction band profile and subband energies for AlxGa1-xN-GaN quantum well is presented by solving the Schrodinger and Poisson equations. A new method is introduced to deal with the accumulation of the immobile charges at the AlxGa1-xN-GaN interface caused by spontaneous and piezoelectric polarization in the process of solving the Poisson equation. The effect of spontaneous and piezoelectric polarization is taken into account in the calculation. It also includes the effect of exchange-correlation to the one electron potential on the Coulomb interaction. Our analysis is based on the one electron effective-mass approximation and charge conservation condition. Based on this model, the electron wave functions and the conduction band structure are derived. We calculate the intersubband transition wavelength lambda(21) for different Al molar fraction of barrier and thickness of well. The calculated result can fit to the experimental data well. The dependence of the absorption coefficient a on the well width and the doping density is also investigated theoretically. (C) 2004 American Vacuum Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

压电纤维复合材料驱动器在形状控制、振动控制、颤振抑制与抖振控制等方面有广泛的应用前景. 首先简单介绍了压电应变驱动的比拟载荷方法, 并采用该方法讨论了压电陶瓷片状驱动器与压电纤维复合材料驱动器在驱动特性上的主要差异. 在此基础上, 对压电纤维复合材料在不同铺设方式、铺设角度与铺设层数下的驱动特性进行了分析, 在刚度影响方面展示了不同铺设角度下模型刚轴的移动. 分析结果表明: 对称铺设反向电场可以同时获得弯曲与扭转变形, 而反对称铺设同向电场主要获得扭转变形; 两种铺设方式下45°铺设角均获得最大弦向转角, 而0°铺设角将获得最大挠度; 多铺层可以增加驱动载荷, 但总体变形效果还取决于结构系统的刚度比例; 对称铺设方式下铺设角对结构刚轴移动的影响非常明显, 在气动弹性控制中应着重关注.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The working principle of piezoelectric mass sensor is generally introduced. Tbe recent progress about the method of immobilizing biomolecule, such as antigen, antibody etc. onto piezoelectric crystal surfaces has been reported, including the way of directly immobilizing biomolecules, and immobilizing them using protein A(or protein G), polymer, silianizition agent, SAM technique, LB monolayer technique etc.. At last, some recent trends of the field has been outlined.