989 resultados para Phase-space Methods
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate the dynamics of a Duffing oscillator driven by a limited power supply, such that the source of forcing is considered to be another oscillator, coupled to the first one. The resulting dynamics come from the interaction between both systems. Moreover, the Duffing oscillator is subjected to collisions with a rigid wall (amplitude constraint). Newtonian laws of impact are combined with the equations of motion of the two coupled oscillators. Their solutions in phase space display periodic (and chaotic) attractors, whose amplitudes, especially when they are too large, can be controlled by choosing the wall position in suitable ways. Moreover, their basins of attraction are significantly modified, with effects on the final state system sensitivity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The Fermi accelerator model is studied in the framework of inelastic collisions. The dynamics of this problem is obtained by use of a two-dimensional nonlinear area-contracting map. We consider that the collisions of the particle with both periodically time varying and fixed walls are inelastic. We have shown that the dissipation destroys the mixed phase space structure of the nondissipative case and in special, we have obtained and characterized in this problem a family of two damping coefficients for which a boundary crisis occurs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We investigate numerically the dynamical behavior of a non-ideal mechanical system consisting of a vibrating cart containing a particle which can oscillate back and forth colliding with walls carved in the cart. This system represents an impact damper for controlling high-amplitude vibrations and chaotic motion. The motion of the cart is induced by an in-board non-ideal motor driving an unbalanced rotor. We study the phase space of the cart and the bouncing particle, in particular the intertwined smooth and fractal basin boundary structure. The control of the chaotic motion of the cart due to the particle impacts is also investigated. Our numerical results suggests that impact dampers of small masses are effective to suppress chaos, but they also increase the final-state sensitivity of the system in its phase space. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The influence of dissipation on the simplified Fermi-Ulam accelerator model (SFUM) is investigated. The model is described in terms of a two-dimensional nonlinear mapping obtained from differential equations. It is shown that a dissipative SFUM possesses regions of phase space characterized by the property of area preservation.
Resumo:
Some scaling properties for classical light ray dynamics inside a periodically corrugated waveguide are studied by use of a simplified two-dimensional nonlinear area-preserving map. It is shown that the phase space is mixed. The chaotic sea is characterized using scaling arguments revealing critical exponents connected by an analytic relationship. The formalism is widely applicable to systems with mixed phase space, and especially in studies of the transition from integrability to nonintegrability, including that in classical billiard problems.
Resumo:
In this work we study the dynamics of fictitious satellites of the Earth. In the first part we do not consider the effect of the Moon and study the dynamics in the restrict three-body model, i.e., a massless satellite under the effect of the gravitational force of an oblate Earth and that of the Sun. We show that a satellite starting with an almost circular orbit suffers very large variations of eccentricity, depending on the initial inclination of the orbit with respect to the reference plane. As the eccentricity may be driven to very large values (approximate to0.9) mutual collisions between satellites or collisions with the planet may occur. In the second part, we include the gravitational effect of the Moon. In this case, we find two regions with large variations of eccentricity due to the presence of the Moon. Consequently, in both scenarios, we find some large regions of the phase space where the long-term stability of some fictitious Earth's satellites is not possible. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We consider a model for rattling in single-stage gearbox systems with some backlash consisting of two wheels with a sinusoidal driving; the equations of motions are analytically integrated between two impacts of the gear teeth. Just after each impact, a mapping is used to obtain the dynamical variables. We have observed a rich dynamical behavior in such system, by varying its control parameters, and we focus on intermittent switching between laminar oscillations and chaotic bursting, as well as crises, which are sudden changes in the chaotic behavior. The corresponding transient basins in phase space are found to be riddled-like, with a highly interwoven fractal structure. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper considers the dynamics of two planets, as the planets B and C of the pulsar PSR B1257+12, near a 3/2 mean-motion resonance. A two-degrees-of-freedom model, in the framework of the general three-body planar problem, is used and the solutions are analyzed through surfaces of section and Fourier techniques in the full phase space of the system.
Resumo:
Some dynamic properties for a light ray suffering specular reflections inside a periodically corrugated waveguide are studied. The dynamics of the model is described in terms of a two dimensional nonlinear area preserving map. We show that the phase space is mixed in the sense that there are KAM islands surrounded by a large chaotic sea that is confined by two invariant spanning curves. We have used a connection with the Standard Mapping near a transition from local to global chaos and found the position of these two invariant spanning curves limiting the size of the chaotic sea as function of the control parameter.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some dynamical properties of a classical particle confined inside a closed region with an oval-shaped boundary are studied. We have considered both the static and time-dependent boundaries. For the static case, the condition that destroys the invariant spanning curves in the phase space was obtained. For the time-dependent perturbation, two situations were considered: (i) non-dissipative and (ii) dissipative. For the non-dissipative case, our results show that Fermi acceleration is observed. When dissipation, via inelastic collisions, is introduced Fermi acceleration is suppressed. The behaviour of the average velocity for both the dissipative as well as the non-dissipative dynamics is described using the scaling approach. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Some dynamical properties for a classical particle confined inside a closed region with an elliptical-oval-like shape are studied. The dynamics of the model is made by using a two-dimensional nonlinear mapping. The phase space of the system is of mixed kind and we have found the condition that breaks the invariant spanning curves in the phase space. We have discussed also some statistical properties of the phase space and obtained the behaviour of the positive Lyapunov exponent. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Some dynamical properties for a classical particle confined in an infinitely deep box of potential containing a periodically oscillating square well are studied. The dynamics of the system is described by using a two-dimensional non-linear area-preserving map for the variables energy and time. The phase space is mixed and the chaotic sea is described using scaling arguments. Scaling exponents are obtained as a function of all the control parameters, extending the previous results obtained in the literature. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is described in terms of a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the dynamics of the particle as well as in the phase space of the non-dissipative system. In particular, inelastic collisions can be assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do indeed suppress Fermi acceleration in two-dimensional time-dependent billiards. (C) 2010 Elsevier B.V. All rights reserved.