921 resultados para Pharmaceutics and Drug Design
Resumo:
Stent thrombosis (ST) after percutaneous coronary intervention has been the focus of intense interest because of its attendant morbidity and mortality. There is controversy about several facets of the problem. These include the frequency of ST with drug-eluting stents (DES) versus bare-metal stents (BMS), the timing of the event, clinical consequences, risk factors, adjunctive therapy, and new preventive approaches. Information has accrued rapidly from several sources, including randomized controlled clinical trials of DES versus BMS in carefully selected subsets of patients and registry experiences in larger patient groups, which provide a more universal real-world picture. The results from these different data sets are not completely concordant. However, several general conclusions can be made: 1) ST is an infrequent but very severe complication of both BMS and DES; 2) at the present time, during 4 years of follow-up from randomized controlled trials that compared DES and BMS, there is no apparent difference in overall ST frequency, although the time course for occurrence appears to differ, with a relative numeric excess of ST late after DES implant; 3) despite this relative imbalance, no differences in the end points of death or death and infarction between DES and BMS are observed; 4) longer-term follow-up of these patients as well as larger angiographic and clinical subsets of patients who receive this technology outside of randomized trials are required to fully study this issue; and 5) advances in stent platforms for drug elution as well as adjunctive pharmacologic therapy are being evaluated to enhance long-term safety.
Resumo:
AIMS: Diabetes mellitus (DM) plays an important role in the development of coronary artery disease. Although previous studies have associated drug-eluting stent (DES) implantation in diabetic patients with favourable clinical and angiographic outcomes, the very long-term efficacy of these devices in diabetic patients undergoing PCI for significant unprotected left main coronary artery (ULMCA) disease has not been established yet. METHODS AND RESULTS: Consecutive diabetic patients (n=100), who underwent elective PCI with DES for de novo lesions in an ULMCA between April 2002 and April 2004 in seven tertiary health care centres, were identified retrospectively and analysed. Consecutive non-diabetic patients (n=193), who underwent elective DES implantation for unprotected ULMCA disease, were selected as a control group. All patients were followed for at least 36 months. At 3-years follow-up, freedom from cardiac death ; myocardial infarction (CDMI), target lesion revascularisation (TLR) and target vessel revascularisation (TVR) did not differ significantly between groups. The adjusted freedom from major adverse cardiac events (MACE, defined as the occurrence of CD, MI or TVR) was 63.4% in the DM group and 77.6% in the controls (p<0.001). When divided into IDDM and NIDDM sub-groups, insulin-dependent DM (IDDM) but not non IDDM (NIDDM) patients had significantly lower freedom from CDMI, TLR, TVR and MACE compared to controls. CONCLUSIONS: These results suggest that major improvements in DES technology and pharmacotherapy are still required to improve clinical outcome and that the decision to perform percutaneous revascularisation in this subset of patients should be taken cautiously and on a case by case basis.
Resumo:
The objective of this research was to develop a high-fidelity dynamic model of a parafoilpayload system with respect to its application for the Ship Launched Aerial Delivery System (SLADS). SLADS is a concept in which cargo can be transfered from ship to shore using a parafoil-payload system. It is accomplished in two phases: An initial towing phase when the glider follows the towing vessel in a passive lift mode and an autonomous gliding phase when the system is guided to the desired point. While many previous researchers have analyzed the parafoil-payload system when it is released from another airborne vehicle, limited work has been done in the area of towing up the system from ground or sea. One of the main contributions of this research was the development of a nonlinear dynamic model of a towed parafoil-payload system. After performing an extensive literature review of the existing methods of modeling a parafoil-payload system, a five degree-of-freedom model was developed. The inertial and geometric properties of the system were investigated to predict accurate results in the simulation environment. Since extensive research has been done in determining the aerodynamic characteristics of a paraglider, an existing aerodynamic model was chosen to incorporate the effects of air flow around the flexible paraglider wing. During the towing phase, it is essential that the parafoil-payload system follow the line of the towing vessel path to prevent an unstable flight condition called ‘lockout’. A detailed study of the causes of lockout, its mathematical representation and the flight conditions and the parameters related to lockout, constitute another contribution of this work. A linearized model of the parafoil-payload system was developed and used to analyze the stability of the system about equilibrium conditions. The relationship between the control surface inputs and the stability was investigated. In addition to stability of flight, one more important objective of SLADS is to tow up the parafoil-payload system as fast as possible. The tension in the tow cable is directly proportional to the rate of ascent of the parafoil-payload system. Lockout instability is more favorable when tow tensions are large. Thus there is a tradeoff between susceptibility to lockout and rapid deployment. Control strategies were also developed for optimal tow up and to maintain stability in the event of disturbances.
Resumo:
Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.
Resumo:
The current climate of increasing performance expectations and diminishing resources, along with innovations in evidence-based practices (EBPs), creates new dilemmas for substance abuse treatment providers, policymakers, funders, and the service delivery system. This paper describes findings from baseline interviews with representatives from 49 state substance abuse authorities (SSAs). Interviews assessed efforts aimed at facilitating EBP adoption in each state and the District of Columbia. Results suggested that SSAs are concentrating more effort on EBP implementation strategies such as education, training, and infrastructure development, and less effort on financial mechanisms, regulations, and accreditation. The majority of SSAs use EBPs as a criterion in their contracts with providers, and just over half reported that EBP use is tied to state funding. To date, Oregon remains the only state with legislation that mandates treatment expenditures for EBPs; North Carolina follows suit with legislation that requires EBP promotion within current resources.
Resumo:
Pulmonary vasoconstriction represents a physiological adaptive mechanism to high altitude. If exaggerated, however, it is associated with important morbidity and mortality. Recent mechanistic studies using short-term acute high altitude exposure have provided insight into the importance of defective vascular endothelial and respiratory epithelial nitric oxide (NO) synthesis, increased endothelin-1 bioavailability, and overactivation of the sympathetic nervous system in causing exaggerated hypoxic pulmonary hypertension in humans. Based on these studies, drugs that increase NO bioavailability, attenuate endothelin-1 induced pulmonary vasoconstriction, or prevent exaggerated sympathetic activation have been shown to be useful for the treatment/prevention of exaggerated pulmonary hypertension during acute short-term high altitude exposure. The mechanisms underpinning chronic pulmonary hypertension in high altitude dwellers are less well understood, but recent evidence suggests that they differ in some aspects from those involved in short-term adaptation to high altitude. These differences have consequences for the choice of the treatment for chronic pulmonary hypertension at high altitude. Finally, recent data indicate that fetal programming of pulmonary vascular dysfunction in offspring of preeclampsia and children generated by assisted reproductive technologies represents a novel and frequent cause of pulmonary hypertension at high altitude. In animal models of fetal programming of hypoxic pulmonary hypertension, epigenetic mechanisms play a role, and targeting of these mechanisms with drugs lowers pulmonary artery pressure. If epigenetic mechanisms also are operational in the fetal programming of pulmonary vascular dysfunction in humans, such drugs may become novel tools for the treatment of hypoxic pulmonary hypertension.
Resumo:
The considerable search for synergistic agents in cancer research is motivated by the therapeutic benefits achieved by combining anti-cancer agents. Synergistic agents make it possible to reduce dosage while maintaining or enhancing a desired effect. Other favorable outcomes of synergistic agents include reduction in toxicity and minimizing or delaying drug resistance. Dose-response assessment and drug-drug interaction analysis play an important part in the drug discovery process, however analysis are often poorly done. This dissertation is an effort to notably improve dose-response assessment and drug-drug interaction analysis. The most commonly used method in published analysis is the Median-Effect Principle/Combination Index method (Chou and Talalay, 1984). The Median-Effect Principle/Combination Index method leads to inefficiency by ignoring important sources of variation inherent in dose-response data and discarding data points that do not fit the Median-Effect Principle. Previous work has shown that the conventional method yields a high rate of false positives (Boik, Boik, Newman, 2008; Hennessey, Rosner, Bast, Chen, 2010) and, in some cases, low power to detect synergy. There is a great need for improving the current methodology. We developed a Bayesian framework for dose-response modeling and drug-drug interaction analysis. First, we developed a hierarchical meta-regression dose-response model that accounts for various sources of variation and uncertainty and allows one to incorporate knowledge from prior studies into the current analysis, thus offering a more efficient and reliable inference. Second, in the case that parametric dose-response models do not fit the data, we developed a practical and flexible nonparametric regression method for meta-analysis of independently repeated dose-response experiments. Third, and lastly, we developed a method, based on Loewe additivity that allows one to quantitatively assess interaction between two agents combined at a fixed dose ratio. The proposed method makes a comprehensive and honest account of uncertainty within drug interaction assessment. Extensive simulation studies show that the novel methodology improves the screening process of effective/synergistic agents and reduces the incidence of type I error. We consider an ovarian cancer cell line study that investigates the combined effect of DNA methylation inhibitors and histone deacetylation inhibitors in human ovarian cancer cell lines. The hypothesis is that the combination of DNA methylation inhibitors and histone deacetylation inhibitors will enhance antiproliferative activity in human ovarian cancer cell lines compared to treatment with each inhibitor alone. By applying the proposed Bayesian methodology, in vitro synergy was declared for DNA methylation inhibitor, 5-AZA-2'-deoxycytidine combined with one histone deacetylation inhibitor, suberoylanilide hydroxamic acid or trichostatin A in the cell lines HEY and SKOV3. This suggests potential new epigenetic therapies in cell growth inhibition of ovarian cancer cells.
Resumo:
Chronic lung diseases (CLDs) are a considerable source of morbidity and mortality and are thought to arise from dysregulation of normal wound healing processes. An aggressive, feature of many CLDs is pulmonary fibrosis (PF) and is characterized by excess deposition of extracellular matrix (ECM) proteins from myofibroblasts in airways. However, factors regulating myofibroblast biology are incompletely understood. Proteins in the cadherin family contribute epithelial to mesenchymal transition (EMT), a suggested source of myofibroblasts. Cadherin 11 (CDH11) contributes to developmental and pathologic processes that parallel those seen in PF and EMT. Utilizing Cdh11 knockout (Cdh11 -/-) mice, the goal of this study was to characterize the contribution of CDH11 in the bleomycin model of PF and assess the feasibility of treating established PF. We demonstrate CDH11 in macrophages and airway epithelial cells undergoing EMT in lungs of mice given bleomycin and patients with PF. Endpoints consistent with PF including ECM production and myofibroblast formation are reduced in CDH11-targeted mice given bleomycin. Findings suggesting mechanisms of CDH11-dependent fibrosis include the regulation of the profibrotic mediator TGF-â in alveolar macrophages and CDH11-mediated EMT. The results of this study propose CDH11 as a novel drug target for PF. In addition, another CLD, chronic obstructive pulmonary disease (COPD), is characterized by airway inflammation and destruction. Adenosine, a nucleoside signaling molecule generated in response to cell stress is upregulated in patients with COPD and is suggested to contribute to its pathogenesis. An established model of adenosine-mediated lung injury exhibiting features of COPD is the Ada -/- mouse. Previous studies in our lab suggest features of the Ada -/- phenotype may be secondary to adenosine-dependent expression of osteopontin (OPN). OPN is a protein implicated in a variety of human pathology, but its role in COPD has not been examined. To address this, Ada/Opn -/- mice were generated and endpoints consistent with COPD were examined in parallel with Ada -/- mice. Results demonstrate OPN-mediated pulmonary neutrophilia and airway destruction in Ada -/- mice. Furthermore, patients with COPD exhibit increased OPN in airways which correlate with clinical airway obstruction. These results suggest OPN represents a novel biomarker or therapeutic target for the management of patients with COPD. The importance of findings in this thesis is highlighted by the fact that no pharmacologic interventions have been shown to interfere with disease progression or improve survival rates in patients with COPD or PF.
Resumo:
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western countries. The interaction between CLL cells and the bone marrow stromal environment is thought to play a major role in promoting the leukemia cell survival and drug resistance. My dissertation works proved a novel biochemical mechanism by which the bone marrow stromal cells exert a profound influence on the redox status of primary CLL cells and enhance their ability to sustain oxidative stress and drug treatment. Fresh leukemia cells isolated from the peripheral blood of CLL patients exhibited two major redox alterations when they were cultured alone: a significant decrease in cellular glutathione (GSH) and an increase in basal ROS levels. However, when cultured in the presence of bone marrow stromal cells, CLL cells restored their redox balance with an increased synthesis of GSH, a decrease in spontaneous apoptosis, and an improved cell survival. Further study showed that CLL cells were under intrinsic ROS stress and highly dependent on GSH for survival, and that the bone marrow stromal cells promoted GSH synthesis in CLL cells through a novel biochemical mechanism. Cysteine is a limiting substrate for GSH synthesis and is chemically unstable. Cells normally obtain cysteine by uptaking the more stable and abundant precursor cystine from the tissue environment and convert it to cysteine intracellularly. I showed that CLL cells had limited ability to take up extracellular cystine for GSH synthesis due to their low expression of the transporter Xc-, but had normal ability to uptake cysteine. In the co-culture system, the bone marrow stromal cells effectively took up cystine and reduced it to cysteine for secretion into the tissue microenvironment to be taken up by CLL cells for GSH synthesis. The elevated GSH in CLL cells in the presence of bone marrow stromal cells significantly protected the leukemia cells from stress-induced apoptosis, and rendered them resistant to standard therapeutic agents such as fludarabine and oxaliplatin. Importantly, disabling of this protective mechanism by depletion of cellular GSH using a pharmacological approach potently sensitized CLL cells to drug treatment, and effectively enhanced the cytotoxic action of fludarabine and oxaliplatin against CLL in the presence of stromal cells. This study reveals a key biochemical mechanism of leukemia-stromal cells interaction, and identifies a new therapeutic strategy to overcome drug resistance in vivo.
Resumo:
This research examines prevalence of alcohol and illicit substance use in the United States and Mexico and associated socio-demographic characteristics. The sources of data for this study are public domain data from the U.S. National Household Survey of Drug Abuse, 1988 (n = 8814), and the Mexican National Survey of Addictions, 1988 (n = 12,579). In addition, this study discusses methodologic issues in cross-cultural and cross-national comparison of behavioral and epidemiologic data from population-based samples. The extent to which patterns of substance abuse vary among subgroups of the U.S. and Mexican populations is assessed, as well as the comparability and equivalence of measures of alcohol and drug use in these national samples.^ The prevalence of alcohol use was somewhat similar in the two countries for all three measures of use: lifetime, past year and past year heavy use, (85.0%, 68.1%, 39.6% and 72.6%, 47.7% and 45.8% for the U.S. and Mexico respectively). The use of illegal substances varied widely between countries, with U.S. respondents reporting significantly higher levels of use than their Mexican counterparts. For example, reported use of any illicit substance in lifetime and past year was 34.2%, 11.6 for the U.S., and 3.3% and 0.6% for Mexico. Despite these differences in prevalence, two demographic characteristics, gender and age, were important correlates of use in both countries. Men in both countries were more likely to report use of alcohol and illicit substances than women. Generally speaking, a greater proportion of respondents in both countries 18 years of age or older reported use of alcohol for all three measures than younger respondents; and a greater proportion of respondents between the ages of 18 and 34 years reported use of illicit substances during lifetime and past year than any other age group.^ Additional substantive research investigating population-based samples and at-risk subgroups is needed to understand the underlying mechanisms of these associations. Further development of cross-culturally meaningful survey methods is warranted to validate comparisons of substance use across countries and societies. ^
Resumo:
This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro-satellite platform. The results have been produced in the frame of ESA’s "Assessment Study for Space Based Space Surveillance Demonstration Mission" performed by the Airbus Defence and Space consortium. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well- designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond-LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Furthermore, unique statistical information about small-size LEO debris (mm size) can be collected in-situ. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing, etc.) until the final products can be offered to the users and with low technological effort and risk. The SBSS system concept takes the ESA SST System Requirements into account and aims at fulfilling SST core requirements in a stand-alone manner. Additionally, requirements for detection and characterisation of small-sizedLEO debris are considered. The paper presents details of the system concept, candidate micro-satellite platforms, the instrument design and the operational modes. Note that the detailed results of performance simulations for space debris coverage and cataloguing accuracy are presented in a separate paper “Capability of a Space-based Space Surveillance System to Detect and Track Objects in GEO, MEO and LEO Orbits” by J. Silha (AIUB) et al., IAC-14, A6, 1.1x25640.
Resumo:
BACKGROUND The safety and efficacy of new-generation drug-eluting stents (DES) in women with multiple atherothrombotic risk (ATR) factors is unclear. METHODS AND RESULTS We pooled patient-level data for women enrolled in 26 randomized trials. Study population was categorized based on the presence or absence of high ATR, which was defined as having history of diabetes mellitus, prior percutaneous or surgical coronary revascularization, or prior myocardial infarction. The primary end point was major adverse cardiovascular events defined as a composite of all-cause mortality, myocardial infarction, or target lesion revascularization at 3 years of follow-up. Out of 10 449 women included in the pooled database, 5333 (51%) were at high ATR. Compared with women not at high ATR, those at high ATR had significantly higher risk of major adverse cardiovascular events (15.8% versus 10.6%; adjusted hazard ratio: 1.53; 95% confidence interval: 1.34-1.75; P=0.006) and all-cause mortality. In high-ATR risk women, the use of new-generation DES was associated with significantly lower risk of 3-year major adverse cardiovascular events (adjusted hazard ratio: 0.69; 95% confidence interval: 0.52-0.92) compared with early-generation DES. The benefit of new-generation DES on major adverse cardiovascular events was uniform between high-ATR and non-high-ATR women, without evidence of interaction (Pinteraction=0.14). At landmark analysis, in high-ATR women, stent thrombosis rates were comparable between DES generations in the first year, whereas between 1 and 3 years, stent thrombosis risk was lower with new-generation devices. CONCLUSIONS Use of new-generation DES even in women at high ATR is associated with a benefit consistent over 3 years of follow-up and a substantial improvement in very-late thrombotic safety.