990 resultados para Perceptual-Motor Tracking.
Resumo:
The progress of science in search of new techniques of the nerve regeneration and the functional repair in reinnervated muscle has been the target of many researchers around the world. Consequently, nerves and muscles in different body segments asked for more enlightenment of their morphology, their interrelation with other anatomic structures and their peculiarities. One of the most significant areas that need deeper studies is the region of the head and neck, since they are often affected by important pathologies. In order to offer the researcher`s community a morphological myoneural interaction model, this study elected the levator labii superioris muscle and its motor nerve, the buccal branch of the facial nerve (VII pair) not only for its special characteristics, but also its value on the facial expression. The rat was chosen for this investigation for being easy to obtain, to keep, to manipulate and to compare this experiment with many others studies previously published. The techniques used were Mesoscopic (dissection), histoenzymologic and morphometric ones. In the results the muscle proved to have a predominance of fast twich fibers (FG and FOG) and superficial location, with a proximal bone and a distal cutaneous insertion. Its motor nerve, the buccal branch of the facial nerve (VII pair), breaks through the muscle belly into its deep face, and comprised a heterogeneous group of myelinic nerve fibers disposed in a regular form in all fascicle. Near the motor point, the nerve showed to be composed of two fascicles with different sizes. Due to the small nerve dimensions, the nerve fibers have a smaller diameter if compared to the motor nerve of pectineus muscle of the cat. Further studies with neural tracers have already had a start in order to provide more information about the distribution and the architecture of these fibers.
Resumo:
This is a study in the rat of the distribution of specific neurotransmitters in neurones projecting from the substantia nigra reticulata (SNR) to the ventrolateral (VL) and ventromedial (VM) thalamic nuclei. Individual axons projecting from the SNR to these thalamic nuclei have also been reconstructed following small injection of the anterograde tracer dextran biotin into the the SNR. Analysis of reconstructions revealed two populations of SNR neurones projecting onto the VL and VM thalamic nuclei. One group projects directly onto the VM and VL, and the other projects to the VM/VL and to the parafascicular nucleus. In another set of experiments Fluoro-Gold was injected into the VL/VM to label SNR projection neurones retrogradely, and immunohistochemistry was performed to determine the distribution of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), gamma -aminobutyric acid (GABA), and glutamate in Fluoro-Gold-labelled SNR projection neurones. Most SNR-VL/VM thalamic projection neurones were immunoreactive to acetylcholine or glutamate, whereas only 25% of the projection neurones were found to be immunoreactive to GABA. (C) 2001 Wiley-Liss, Inc.
Resumo:
Aberrant movement patterns and postures are obvious to clinicians managing patients with musculoskeletal pain. However, some changes in motor function that occur in the presence of pain are less apparent. Clinical and basic science investigations have provided evidence of the effects of nociception on aspects of motor function. Both increases and decreases in muscle activity have been shown, along with alterations in neuronal control mechanisms, proprioception, and local muscle morphology. Various models have been proposed in an attempt to provide an explanation for some of these changes. These include the vicious cycle and pain adaptation models. Recent research has seen the emergence of a new model in which patterns of muscle activation and recruitment are altered in the presence of pain (neuromuscular activation model). These changes seem to particularly affect the ability of muscles to perform synergistic functions related to maintaining joint stability and control. These changes are believed to persist into the period of chronicity. This review shows current knowledge of the effect of musculoskeletal pain on the motor system and presents the various proposed models, in addition to other shown effects not covered by these models. The relevance of these models to both acute and chronic pain is considered. It is apparent that people experiencing musculoskeletal pain exhibit complex motor responses that may show some variation with the time course of the disorder. (C) 2001 by the American Pain Society.
Resumo:
Recent findings that spinal manual therapy (SMT) produces concurrent hypoalgesic and sympathoexcitatory effects have led to the proposal that SMT may exert its initial effects by activating descending inhibitory pathways from the dorsal periaqueductal gray area of the midbrain (dPAG). In addition to hypoalgesic and sympathoexcitatory effects, stimulation of the dPAG in animals has been shown to hal e a facilitatory effect on motor activity. This study sought to further investigate the proposal regarding SMT and the FAG by including a test of motor function in addition to the variables previously investigated, Using a condition randomised, placebo-controlled, double blind, repeated measures design, 30 subjects with mid to lon er cervical spine pain of insidious onset participated in the study. The results indicated that the cervical mobilisation technique produced a hypoalgesic effect as revealed by increased pressure pain thresholds on the side of treatment (P = 0.0001) and decreased resting visual analogue scale scores (P = 0.049). The treatment technique also produced a sympathoexcitatory effect with an increase in skin conductance (P < 0.002) and a decrease in skin temperature (P = < 0.02). There was a decrease in superficial neck flexor muscle activity (P < 0.0002) at the lower levels of a staged cranio-cervical flexion test. This could imply facilitation of the deep neck flexor muscles with a decreased need for co-activation of the superficial neck flexors, The combination of all findings,would support the proposal that SMT may, at least initially, exert part of its influence via activation of the PAG, (C) 2000 Harcourt Publishers Ltd.
Resumo:
Purpose: Hemiplegic shoulder pain can affect up to 70% of stroke patients and can have an adverse impact on rehabilitation outcomes. This article aims to review the literature on the suggested causes of hemiplegic shoulder pain and the therapeutic techniques that can be used to prevent or treat it. On the basis of this review, the components of an optimal management programme for hemiplegic shoulder pain are explored. Method: English language articles in the CINAHL and MEDLINE databases between 1990 and 2000 were reviewed. These were supplemented by citation tracking and manual searches. Results: A management programme for hemiplegic shoulder pain could comprise the following components: provision of an external support for the affected upper limb when the patient is seated, careful positioning in bed, daily static positional stretches, motor retraining and strapping of the scapula to maintain postural tone and symmetry. Conclusions: Research is required to evaluate the effectiveness of the components of the proposed management programme for the prevention and treatment of hemiplegic shoulder pain and to determine in what combination they achieve the best outcomes.
Resumo:
Changes in trunk muscle recruitment have been identified in people with low-back pain (LBP). These differences may be due to changes in the planning of the motor response or due to delayed transmission of the descending motor command in the nervous system. These two possibilities were investigated by comparison of the effect of task complexity on the feedforward postural response of the trunk muscles associated with rapid arm movement in people with and without LBP. Task complexity was increased by variation of the expectation for a command to either abduct or flex the upper limb. The onsets of electromyographic activity (EMG) of the abdominal and deltoid muscles were measured. In control subjects, while the reaction time of deltoid and the superficial abdominal muscles increased with task complexity, the reaction time of transversus abdominis (TrA) was constant. However, in subjects with LBP, the reaction time of TrA increased along with the other muscles as task complexity was increased. While inhibition of the descending motor command cannot be excluded, it is more likely that the change in recruitment M of TrA represents a more complex change in organisation of the postural response.
Resumo:
Alcoholism is a major health problem in Western countries, yet relatively little is known about the mechanisms by which chronic alcohol abuse causes the pathologic changes associated with the disease. It is likely that chronic alcoholism affects a number of signaling cascades and transcription factors, which in turn result in distinct gene expression patterns. These patterns are difficult to detect by traditional experiments measuring a few mRNAs at a time, but are well suited to microarray analyses. We used cDNA microarrays to analyze expression of approximately 10 000 genes in the frontal and motor cortices of three groups of chronic alcoholic and matched control cases. A functional hierarchy was devised for classification of brain genes and the resulting groups were compared based on differential expression. Comparison of gene expression patterns in these brain regions revealed a selective reprogramming of gene expression in distinct functional groups. The most pronounced differences were found in myelin-related genes and genes involved in protein trafficking. Significant changes in the expression of known alcohol-responsive genes, and genes involved in calcium, cAMP, and thyroid signaling pathways were also identified. These results suggest that multiple pathways may be important for neuropathology and altered neuronal function observed in alcoholism.
Resumo:
1. The present brief review covers some novel aspects of integration between respiration and movement of the body. 2. There are potent viscerosomatic reflexes in animals involving small-diameter pulmonary afferents that, when excited, would limit exercise. However, recent studies using lobeline injections to excite pulmonary afferents in awake humans suggest that there is no evoked reflex motoneuronal inhibition. Instead, the noxious respiratory sensations generated by the vagal afferents may be crucial in the decision to stop exercise. 3. While respiratory movements may affect limb movements, the control of the trunk and limbs can involve interaction (and even interference) with key respiratory muscles, such as the diaphragm. Recent studies have revealed that not only does the diaphragm receive feed-forward drive prior to some limb movements, but that it also contracts both phasically and tonically during repetitive limb movements. 4. Thus, challenges to posture can indirectly challenge ventilation, while coordinated diaphragm contraction may contribute to control of the trunk.