906 resultados para Peptide bonds
Resumo:
In 1-cyclo-hexyl-6,6,8a-trimethyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C19H27NO3, (I), and the isomorphous compounds 6,6,8a-trimethyl-1-phenyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C19H21NO3, (II), and 6,6,8a-trimethyl-1-(3-pyridyl)-3a,6,7,8a-tetra-hydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C18H20N2O3, (III), the tetra-hydro-benzo-dihydro-furo-pyrrolidine ring systems are folded at the cis junction of the five-membered rings, giving rise to a non-planar shape of the tricyclic cores. The dihydro-furan and pyrrolidine rings in (I) are puckered and adopt an envelope conformation. The cyclo-hexene rings adopt a half-chair conformation in all the mol-ecules, while the substituent N-cyclo-hexyl ring in (I) assumes a chair form. Short intra-molecular C-HcO contacts form S(5) and S(6) motifs. The isomorphous compounds (II) and (III) are effectively isostructural, and aggregate into chains via inter-molecular C-HcO hydrogen bonds.
Resumo:
The activation of functional responses in rabbit peritoneal neutrophils by gramicidin and the chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine methyl ester, was studied. Gramicidin activated superoxide generation, lysosomal enzyme release and a decrease in fluorescence of chlortetracycline-loaded cells, as for the chemotactic peptide. The maximum intensities of the responses by gramicidin were lower than that by chemotactic peptide. Responses by both these peptides could be inhibited by t-butyloxycarbonyl-methionyl-leucyl-phenylalanine, a chemotactic peptide receptor antagonist. Gramicidin gave responses at low doses comparable to that of the chemotactic peptide.
Resumo:
The conformational analysis of a pair of two-linked peptide units in the anti-parallel arrangement is reported here with a view to study the effect of association of one chain with the other. The pair of two-linked peptide units were fixed in space through the hydrogen bonds between them, in accordance with certain hydrogen bond criteria. Model building was undertaken to ascertain whether the proximity of the side-chains could be used to eliminate any one of the right-hand twisted, left-hand twisted or regular β-structures. Stereochemically, it was found possible with all of them. The preference for a right-hand twisted β-structure, however, was indicated by the classical energy calculations. The relevance of the results thus obtained is discussed in the context of the preferential right-hand twist of the β-pleated sheets present in globular proteins. The agreement between the minimum energy conformations obtained for the pair of two-linked peptide units and the globular protein data is also indicated.
Resumo:
This review article, based on a lecture delivered in Madras in 1985, is an account of the author's experience in the working out of the molecular structure and conformation of the collagen triple-helix over the years 1952–78. It starts with the first proposal of the correct triple-helix in 1954, but with three residues per turn, which was later refined in 1955 into a coiled-coil structure with approximately 3.3 residues per turn. The structure readily fitted proline and hydroxyproline residues and required glycine as every third residue in each of the three chains. The controversy regarding the number of hydrogen bonds per tripeptide could not be resolved by X-ray diffraction or energy minimization, but physicochemical data, obtained in other laboratories during 1961–65, strongly pointed to two hydrogen bonds, as suggested by the author. However, it was felt that the structure with one straight NH … O bond was better. A reconciliation of the two was obtained in Chicago in 1968, by showing that the second hydrogen bond is via a water molecule, which makes it weaker, as found in the physicochemical studies mentioned above. This water molecule was also shown, in 1973, to take part in further cross-linking hydrogen bonds with the OH group of hydroxyproline, which occurred always in the location previous to glycine, and is at the right distance from the water. Thus, almost all features of the primary structure, X-ray pattern, optical and hydrodynamic data, and the role of hydroxyproline in stabilising the triple helical structure, have been satisfactorily accounted for. These also lead to a confirmation of Pauling's theory that vitamin C improves immunity to diseases, as explained in the last section.
Resumo:
In 1-cyclo-hexyl-6,6,8a-trimethyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro2, 3-b]pyrrole-2,4(3H,5H)-dione, C19H27NO3, (I), and the isomorphous compounds 6,6,8a-trimethyl-1-phenyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro2,3-b]p yrrole-2,4(3H,5H)-dione, C19H21NO3, (II), and 6,6,8a-trimethyl-1-(3-pyridyl)-3a,6,7,8a-tetra-hydro-1H-1-benzofuro2, 3-b]pyrrole-2,4(3H,5H)-dione, C18H20N2O3, (III), the tetra-hydro-benzo-dihydro-furo-pyrrolidine ring systems are folded at the cis junction of the five-membered rings, giving rise to a non-planar shape of the tricyclic cores. The dihydro-furan and pyrrolidine rings in (I) are puckered and adopt an envelope conformation. The cyclo-hexene rings adopt a half-chair conformation in all the mol-ecules, while the substituent N-cyclo-hexyl ring in (I) assumes a chair form. Short intra-molecular C-HcO contacts form S(5) and S(6) motifs. The isomorphous compounds (II) and (III) are effectively isostructural, and aggregate into chains via inter-molecular C-HcO hydrogen bonds.
Resumo:
In the crystal structure of the title salt, C7H7Cl2N2O2+ center dot Cl-, the chloride anions participate in extensive hydrogen bonding with the aminium cations and indirectly link the molecules through multiple N+-H center dot center dot center dot Cl- salt bridges. There are two independent molecules in the asymmetric unit, related by a pseudo-inversion center. The direct intermolecular coupling is established by C-H center dot center dot center dot O, C-H center dot center dot center dot Cl and C-Cl center dot center dot center dot Cl- interactions. A rare three-center (donor bifurcated) C-H center dot center dot center dot (O,O) hydrogen bond is observed between the methylene and nitro groups, with a side-on intramolecular component of closed-ring type and a head-on intermolecular component.
Synthetic peptide models for the redox-active disulfide loop of glutaredoxin. Conformational studies
Resumo:
Two cyclic peptide disulfides Boc-Cys-Pro-X-Cys-NHMe (X = L-Tyr or L-Phe) have been synthesized as models for the 14-membered redox-active disulfide loop of glutaredoxin. 'H NMR studies at 270 MHz in chloroform solutions establish a type I 0-turn conformation for the Pro-X segment in both peptides, stabilized by a 4-1 hydrogen bond between the Cys(1) CO and Cys(4) NH groups. Nuclear Overhauser effects establish that the aromatic ring in the X = Phe peptide is oriented over the central peptide unit. In dimethyl sulfoxide solutions two conformational species are observed in slow exchange on the NMR time scale, for both peptides. These are assigned to type I and type I1 p-turn structures with -Pro-Tyr(Phe)-as the corner residues. The structural assignments are based on correlation of NMR parameters with model 14-membered cyclic cystine peptides with Pro-X spacers. Circular dichroism studies based on the -S-Sn- u* transition suggest a structural change in the disulfide bridge with changing solvent polarity, establishing conformational coupling between the peptide backbone and the disulfide linkage in these systems.
Resumo:
Interaction of the antileukemic drugs, cytosine-arabinoside (Ara-C) and adenosine-arabinoside (Ara-A) and a structural analogue, cytidine, with aromatic dipeptides has been studied by fluorescence and NMR spectroscopy. Ara-C and cytidine bind tryptophanyl and histidyl dipeptides but not tyrosyl dipeptides, while Ara-A does not bind to any of them. Both studies indicate association involving stacking of aromatic moieties. NMR spectra also indicate a protonation of the histidine moiety by Ara-C. In case of cytidine, the chemical shifts observed on binding to His-Phe imply that the backbone protons of the dipeptide participate in the binding. The conformation of the sugar and the base seem to play a very important role in the binding phenomenon as three similar molecules, Ara-C, Ara-A and cytidine bind in totally different ways.
Resumo:
The ir-spectra in the N-H stretching region of Piv-Pro-NHMe and Boc-Pro-NHMe have been studied in carbon tetrachloride and chloroform solutions over a wide range of concentrations. Based on the concentration dependence of the N-H stretching bands, it has been shown that the characteristic N-H stretching band due to the C7 intramolecular hydrogen bond is around 3335 cm-'. Intermolecular hydrogen bonding also occurs to a small extent in these peptides, giving rise to a slight concentration dependence of the N-H stretching bands. The band around 3335 cm-* need not necessarily be due to C7 hydrogen bonds alone as proposed by Tsuboi et al. or to intermolecular hydrogen bonding alone as proposed by Maxfield et al.; this conclusion is supported by studies on Boc-Leu-NHMe, which undergoes only intermolecular hydrogen bonding We have shown that 2-Aib-Aib-OMe and Z-Aib- Ala-OMe form C7 intramolecular hydrogen bonds in addition to C5 intramolecular hydrogen bonds. The present studies also show that all the peptides studied exist in more than one conformation in solution.
Resumo:
The circular dichroism spectra of four 0-turn model peptides, Z-Aib-Pro-Aib-Pro- OMe (l), Piv-Pro-Aib-NHMe (2), Piv-Pro-D-Ala-NHMe (3) and Piv-Pro-Val-NHMe (4) have been examined under a wide range of solvent conditions, using methanol, hexafluoroisopropanol and cyclohexane. Type I and Type I1 0-turns have been observed for peptides 1 and 2 respectively, in the solid state, while the Pro-D-Ala sequence adopts a Type I1 Sturn in a related peptide crystal structure. A class C spectrum is observed for 1 in various solvents, suggesting a variant of a Type I(II1) structure. The Type I1 f3-turn is characterized by a CD spectrum having two positive CD bands at - 230 nm and - 202 nm, a feature observed in Piv-Pro- D-Ala-NHMe in cyclohexane and methanol and for Piv-Pro-Aib-NHMe in methanol. Peptide 2 exhibits solvent dependent CD spectra, which may be rationalized by considering Type 11, I11 and V reverse turn structures. Piv-Pro- Val-NHMe adopts nonaturn structures in polar solvents, but exhibits a class B spectrum in cyclohexane suggesting a population of Type I &turns.
Resumo:
Three tripeptides containing a central Z-dehydrophenylalanine residue (Δz-Phe), Boc-L-Phe-Δz-Phe-X-OMe (X = L-Val 1, L-Leu 2 and X = L-Ala 3) have been synthesized and their solution conformations investigated by 270 MHz 1H NMR spectroscopy. In all three peptides, conformations involving the X residue NH in an intramolecular hydrogen bond were favoured in CDCl3 solutions. Studies of the nuclear Overhauser effect (NOE) provided support for a Type II β turn conformation in these peptides with Phe and Δz-Phe occupying the i + 1 and i + 2 positions, respectively. Significantly different conformations lacking any intramolecular hydrogen bonds were observed for peptide 1 in (CD3)2SO. NOE results were consistent with a significant population of molecules having semi-extended conformations (ø > 100°) at the Δz-Phe residue.
Resumo:
NHCH3 (X = Gly 1, Ala 2, Aib 3, Leu 4 and D-Ala 5), have been investigated by Raman and circular dichroism (CD) spectroscopy. Solid state Raman spectra are consistent with β-turn conformations in all five peptides. These peptides exhibit similar conformations of the disulfide segment in the solid state with a characteristic disulfide stretching frequency at 519 ± 3 cm-1, indicative of a trans-gauche-gauche arrangement about the Cα—Cβ—S—S—Cβ—Cα bonds. The results correlate well with the solid state conformations determined by X-ray diffraction for peptides 3 and 4. CD studies in chloroform and dimethylsulfoxide establish solvent dependent conformational changes for peptides 1, 3 and 5. Disulfide chirality has been derived using the quadrant rule. CD results together with previously reported nuclear magnetic resonance (n.m.r.) data suggest a conformational coupling between the peptide backbone and the disulfide segment
N-H center dot center dot center dot F hydrogen bonds in fluorinated benzanilides: NMR and DFT study
Resumo:
Using F-19 and H-1-NMR (with N-14 decoupling) spectroscopic techniques together with density functional theoretical (DFT) calculations, we have investigated weak molecular interactions in isomeric fluorinated benzanilides. Simultaneous presence of through space nuclear spin-spin couplings ((1h)J(N-H center dot center dot center dot F)) of diverse strengths and feeble structural fluctuations are detected as a function of site specific substitution of fluorine atoms within the basic identical molecular framework. The transfer of hydrogen bonding interaction energies through space is established by perturbing their strengths and monitoring the effect on NMR parameters. Multiple quantum (MQ) excitation, up to the highest possible MQ orders of coupled protons, is utilized as a tool for accurate H-1 assignments. Results of NMR studies and DFT calculations are compared with the relevant structural parameters taken from single crystal X-ray diffraction studies.
Resumo:
The critical, and often most difficult, step in structure elucidation of diverse classes of natural peptides is the determination of correct disulfide pairing between multiple cysteine residues. Here, we present a direct mass spectrometric analytical methodology for the determination of disulfide pairing. Protonated peptides, having multiple disulfide bonds, fragmented under collision induced dissociation (CID) conditions and preferentially cleave along the peptide backbone, with occasional disulfide fragmentation either by C-beta-S bond cleavage through H-alpha abstraction to yield dehydroalanine and cysteinepersulfide, or by S-S bond cleavage through H-beta abstraction to yield the thioaldehyde and cysteine. Further fragmentation of the initial set of product ions (MSn) yields third and fourth generation fragment ions, permitting a distinction between the various possible disulfide bonded structures. This approach is illustrated by establishing cysteine pairing patterns in five conotoxins containing two disulfide bonds. The methodology is extended to the Conus araneosus peptides An 446 and Ar1430, two 14 residue sequences containing 3 disulfide bonds. A distinction between 15 possible disulfide pairing schemes becomes possible using direct mass spectral fragmentation of the native peptides together with fragmentation of enzymatically nicked peptides.