993 resultados para Patrons ce conception
Resumo:
Fe-57 Mossbauer spectra for the Fe atoms in the R3Fe29-xTx (R=Y, Ce, Nd, Sm, Gd, Tb, Dy; T=V, Cr) compounds were collected at 4.2 K. The analysis of Mossbauer spectra was based on the results of magnetization and neutron powder diffraction measurements. The average Fe magnetic moments at 4.2 K, deduced from our data, are in accord with magnetization measurements. The average hyperfine field of Tb3Fe29-xCrx (x=1.0, 1.5, 2.0, and 3.0) decreases with increasing Cr concentration, which is also in accordance with the variation of the average Fe magnetic moment in the Tb3Fe29-xCrx compounds.
Resumo:
The crystallographic and intrinsic magnetic properties of hydride R3Fe29-xTxHy (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy; T=V and Cr) have been investigated. The lattice constants and the unit cell volume of R3Fe29-xTxHy decrease with increasing R atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Regular anisotropic expansions, mainly along the a- and b-axis rather than along the c-axis, are observed for all the compounds upon hydrogenation. Hydrogenation leads to an increase in Curie temperature. First-order magnetization processes (FOMP) occur in magnetic fields of around 1.5 T and 4.0 T at 4.2 K for Nd3Fe24.5Cr4.5H5.0 and Tb(3)Fc(27.0)Cr(2.0)H(2.8), and around 1.4 T at room temperature for Gd3Fe28.0Cr1.0H4.2 Abnormal crystallographic and magnetic properties of Ce3Fe29-xTxHy suggest that the Ce ion is non-triply ionized.
Resumo:
A systematic study of the phase formation, structure and magnetic properties of the R3Fe29-xTx compounds (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy; T=V and Cr) has been performed upon hydrogenation. The lattice constants and the unit cell volume of R3Fe29-xTxHy decrease with increasing R atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Regular anisotropic expansions mainly along the a- and b-axis rather than along the c-axis are observed for all of the compounds upon hydrogenation. Hydrogenation leads to an increase in the Curie temperature and a corresponding increase in the saturation magnetization at room temperature for each compound. First order magnetization processes (FOMP) occur in the external magnetic fields for Nd3Fe24.5Cr4.5H5.0, Tb3Fe27.0Cr2.0H2.8, and Gd3Fe28.0Cr1.0H4.2 compounds.
Resumo:
A systematic investigation of crystallographic and intrinsic magnetic properties of the hydrides R3Fe29 - xVxHy (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed in this work. The lattice constants a, b, and c and the unit cell volume of R3Fe29 - xVxHy decrease with increasing rare-earth atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in regular anisotropic expansions along the a-, b-, and c-axes in this series of hydrides. Abnormal crystallographic and magnetic properties of Ce3Fe27.5V1.5H6.5, like Ce3Fe27.5V1.5, suggest that the Ce ion is non-triply ionized. Hydrogenation leads to the increase in both Curie temperature for all the compounds and in the saturation magnetization at 4.2 K and RT for R3Fe29 - xVx with R = Y, Ce, Nd, Sm, Gd, and Dy, except for Tb. Hydrogenation also leads to a decrease in the anisotropy field at 4.2 K and RT for R3Fe29 - xVx with R = Y, Ce, Nd, Gd, Tb, and Dy, except for Sm. The Ce3Fe27.5V1.5 and Gd3Fe28.4V0.6 show the larger storage of hydrogen with y = 6.5 and 6.9 in these hydrides. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A systematic study of the structural and intrinsic magnetic properties of the hydrides R3Fe29-xCrxHy (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. Hydrogenation lends to a relative volume expansion of the unit cell and a decrease in x-ray density for each compound. Anisotropic expansions mainly along the n- and b-axes rather than along the c-axis for all of the compounds upon hydrogenation are observed. The lattice constants and the unit-cell volume of R3Fe29-xCrx and R3Fe29-xCrxHy decrease with increasing R atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in an increase in the Curie temperature and a corresponding increase in the saturation magnetization at room temperature for each compound. After hydrogenation a decrease of 0.34 mu(B)/Fe in the average Fe atomic magnetic moment and a slight increase in the anisotropy field for Y3Fe27.2Cr1.8 are achieved at 4.2 K. First-order magnetization processes (FOMP) occur in magnetic fields of around 1.5 T and 4.0 T at 4.2 K for Nd3Fe24.5Cr4.5H5.0 and TD3Fe27.0Cr2.0H2.8, and around 1.4 T at room temperature for Gd3Fe28.0Cr1.0H4.2. The abnormal crystallographic and magnetic properties of Ce3Fe25.0Cr4.0 and Ce3Fe25.0Cr4.0H5.4 suggest that the Ce ion non-triply ionized.
Resumo:
A systematic investigation of crystallographic and magnetic properties of nitride R3Fe29-xVxN4 (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. Nitrogenation leads to a relative volume expansion of about 6%. The lattice constants and unit cell volume decrease with increasing rare-earth atomic number from Nd to Dy, reflecting the lanthanide contraction. On average, the Curie temperature increases due to the nitrogenation to about 200 K compared with its parent compound. Generally speaking, nitrogenation also results in a remarkable improvement of the saturation magnetization and anisotropy fields at 4.2 K and room temperature for R3Fe29-xVxN4 compared with their parent compounds. The transition temperature indicates the spin reorientations of R3Fe29-xVxN4 for R = Nd and Sm are at around 375 and 370 K which are higher than that of R3Fe29-xVx, for R = Nd and Sm 145 and 140 K, respectively. The magnetohistory effects of R3Fe29-xVxN4 (R = Ce, Nd, and Sm) are observed in low fields of 0.04 T. After nitrogenation the easy magnetization direction of Sm3Fe26.7V2.3 is changed from an easy-cone structure to the b-axis. As a preliminary result, a maximum remanence B-r of 0.94 T, an intrinsic coercivity mu(0)H(C) of 0.75 T, and a maximum energy product (B H)(max) of 108.5 kJ m(-3) for the nitride magnet Sm3Fe26.7V2.3N4 are achieved by ball-milling at 293 K.
Resumo:
Chemical-looping reforming (CLR) is a technology that can be used for partial oxidation and steam reforming of hydrocarbon fuels. It involves the use of a metal oxide as an oxygen carrier, which transfers oxygen from combustion air to the fuel. Composite oxygen carriers of cerium oxide added with Fe, Cu, and Mn oxides were prepared by co-precipitation and investigated in a thermogravimetric analyzer and a fixed-bed reactor using methane as fuel and air as oxidizing gas. It was revealed that the addition of transition-metal oxides into cerium oxide can improve the reactivity of the Ce-based oxygen carrier. The three kinds of mixed oxides showed high CO and H-2 selectivity at above 800 degrees C. As for the Ce-Fe-O oxygen carrier, methane was converted to synthesis gas at a H-2/CO molar ratio close to 2:1 at a temperature of 800-900 degrees C; however, the methane thermolysis reaction was found on Ce-Cu-O and Ce-Mn-O oxygen carriers at 850-900 degrees C. Among the three kinds of oxygen carriers, Ce-Fe-O presented the best performance for methane CLR. On Ce-Fe-O oxygen carriers, the CO and H-2 selectivity decreased as the Fe content increased in the carrier particles. An optimal range of the Ce/Fe molar ratio is Ce/Fe > 1 for Ce-Fe-O oxygen carriers. Scanning electron microscopy (SEM) analysis revealed that the microstructure of the Ce-Fe-O oxides was not dramatically changed before and after 20 cyclic reactions. A small amount of Fe3C was found in the reacted Ce-Fe-O oxides by X-ray diffraction (XRD) analysis.