774 resultados para Paper addresses
Resumo:
The primary approaches for people to understand the inner properties of the earth and the distribution of the mineral resources are mainly coming from surface geology survey and geophysical/geochemical data inversion and interpretation. The purpose of seismic inversion is to extract information of the subsurface stratum geometrical structures and the distribution of material properties from seismic wave which is used for resource prospecting, exploitation and the study for inner structure of the earth and its dynamic process. Although the study of seismic parameter inversion has achieved a lot since 1950s, some problems are still persisting when applying in real data due to their nonlinearity and ill-posedness. Most inversion methods we use to invert geophysical parameters are based on iterative inversion which depends largely on the initial model and constraint conditions. It would be difficult to obtain a believable result when taking into consideration different factors such as environmental and equipment noise that exist in seismic wave excitation, propagation and acquisition. The seismic inversion based on real data is a typical nonlinear problem, which means most of their objective functions are multi-minimum. It makes them formidable to be solved using commonly used methods such as general-linearization and quasi-linearization inversion because of local convergence. Global nonlinear search methods which do not rely heavily on the initial model seem more promising, but the amount of computation required for real data process is unacceptable. In order to solve those problems mentioned above, this paper addresses a kind of global nonlinear inversion method which brings Quantum Monte Carlo (QMC) method into geophysical inverse problems. QMC has been used as an effective numerical method to study quantum many-body system which is often governed by Schrödinger equation. This method can be categorized into zero temperature method and finite temperature method. This paper is subdivided into four parts. In the first one, we briefly review the theory of QMC method and find out the connections with geophysical nonlinear inversion, and then give the flow chart of the algorithm. In the second part, we apply four QMC inverse methods in 1D wave equation impedance inversion and generally compare their results with convergence rate and accuracy. The feasibility, stability, and anti-noise capacity of the algorithms are also discussed within this chapter. Numerical results demonstrate that it is possible to solve geophysical nonlinear inversion and other nonlinear optimization problems by means of QMC method. They are also showing that Green’s function Monte Carlo (GFMC) and diffusion Monte Carlo (DMC) are more applicable than Path Integral Monte Carlo (PIMC) and Variational Monte Carlo (VMC) in real data. The third part provides the parallel version of serial QMC algorithms which are applied in a 2D acoustic velocity inversion and real seismic data processing and further discusses these algorithms’ globality and anti-noise capacity. The inverted results show the robustness of these algorithms which make them feasible to be used in 2D inversion and real data processing. The parallel inversion algorithms in this chapter are also applicable in other optimization. Finally, some useful conclusions are obtained in the last section. The analysis and comparison of the results indicate that it is successful to bring QMC into geophysical inversion. QMC is a kind of nonlinear inversion method which guarantees stability, efficiency and anti-noise. The most appealing property is that it does not rely heavily on the initial model and can be suited to nonlinear and multi-minimum geophysical inverse problems. This method can also be used in other filed regarding nonlinear optimization.
Resumo:
In the principles-and-parameters model of language, the principle known as "free indexation'' plays an important part in determining the referential properties of elements such as anaphors and pronominals. This paper addresses two issues. (1) We investigate the combinatorics of free indexation. In particular, we show that free indexation must produce an exponential number of referentially distinct structures. (2) We introduce a compositional free indexation algorithm. We prove that the algorithm is "optimal.'' More precisely, by relating the compositional structure of the formulation to the combinatorial analysis, we show that the algorithm enumerates precisely all possible indexings, without duplicates.
Resumo:
This paper addresses the problem of nonlinear multivariate root finding. In an earlier paper we described a system called Newton which finds roots of systems of nonlinear equations using refinements of interval methods. The refinements are inspired by AI constraint propagation techniques. Newton is competative with continuation methods on most benchmarks and can handle a variety of cases that are infeasible for continuation methods. This paper presents three "cuts" which we believe capture the essential theoretical ideas behind the success of Newton. This paper describes the cuts in a concise and abstract manner which, we believe, makes the theoretical content of our work more apparent. Any implementation will need to adopt some heuristic control mechanism. Heuristic control of the cuts is only briefly discussed here.
Resumo:
This paper addresses the problem of synthesizing stable grasps on arbitrary planar polygons. Each finger is a virtual spring whose stiffnes and compression can be programmed. The contacts between the finger tips and the object are point contacts without friction. We prove that all force-closure grasps can be made stable, and it costs 0(n) time to synthesize a set of n virtual springs such that a given force closure grasp is stable. We can also choose the compliance center and the stiffness matrix of the grasp, and so choose the compliant behavior of the grasped object about its equilibrium. The planning and execution of grasps and assembly operations become easier and less sensitive to errors.
Resumo:
This paper addresses the problem of efficiently computing the motor torques required to drive a lower-pair kinematic chain (e.g., a typical manipulator arm in free motion, or a mechanical leg in the swing phase) given the desired trajectory; i.e., the Inverse Dynamics problem. It investigates the high degree of parallelism inherent in the computations, and presents two "mathematically exact" formulations especially suited to high-speed, highly parallel implementations using special-purpose hardware or VLSI devices. In principle, the formulations should permit the calculations to run at a speed bounded only by I/O. The first presented is a parallel version of the recent linear Newton-Euler recursive algorithm. The time cost is also linear in the number of joints, but the real-time coefficients are reduced by almost two orders of magnitude. The second formulation reports a new parallel algorithm which shows that it is possible to improve upon the linear time dependency. The real time required to perform the calculations increases only as the [log2] of the number of joints. Either formulation is susceptible to a systolic pipelined architecture in which complete sets of joint torques emerge at successive intervals of four floating-point operations. Hardware requirements necessary to support the algorithm are considered and found not to be excessive, and a VLSI implementation architecture is suggested. We indicate possible applications to incorporating dynamical considerations into trajectory planning, e.g. it may be possible to build an on-line trajectory optimizer.
Resumo:
Grattan, John and Pyatt, J.P 'Volcanic eruptions dry fogs and the european palaeoenvironmental record: Localised phenomena or Hemispheric impacts?' Global and Planetary Change, 21(1999) 173-179
Resumo:
J. Keppens and Q. Shen. Causality enabled compositional modelling of Bayesian networks. Proceedings of the 18th International Workshop on Qualitative Reasoning, pages 33-40, 2004.
Resumo:
R. Zwiggelaar, Q. Yang, E. Garcia-Pardo and C.R. Bull, 'Using spectral information and machine vision for bruise detection on peaches and apricots', Journal of Agricultural Engineering Research 63 (4), 323-332 1996)
Resumo:
Abed, S. Y., Ba-Fail, A. O., & Jasimuddin, S. (2001). An econometric analysis of international air travel demand in Saudi Arabia. Journal of Air Transport Management, 7(3), 143-148 RAE2008
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
This paper addresses the problem of analyzing performance of WWW servers. The web has experienced a phenomenal growth and has become the most popular Internet application. As a consequence of its large popularity, the Internet has suffered from various performance problems, such as network congestion and overloaded servers. These days, it is not uncommon to find servers refusing connections because they are overloaded. Performance has always been a key issue in the design and operation of on-line systems. With regard to Internet, performance is also critical, because users want fast and easy access to all objects (i.e., documents, pictures, audio, and video) available on the net. Thus, it is important to understand WWW performance issues. This paper focuses on the performance analysis of a Web server. Using a synthetic benchmark (WebStone), we analyze three different Web server software running on top of a Windows NT platform and performing some typical WWW tasks.
Resumo:
This research in progress paper addresses the IS issue in relation to conducting relevant research while keeping academic rigor. In particular, it contributes to the ongoing academic conversation around the investigation on how to incor-porate action in design science research. In this document the philosophical underpinnings of the recently proposed methodology called Action Design Re-search [1] are derived, outlined and integrated into Burrel and Morgan’s Par-adigmatic Framework (1979)[6]. The results so far show how Action Design Research can be considered as a particular case of Design Science Research (rather than a methodology closely related to Action Research) although they can assume two different epistemological positions. From these philosophical perspectives, future works will involve the inclusion of actual research projects using the three different methodologies. The final goal is to outline and structure the divergences and similarities of Action Design Research with Design Science Research and Canonical Action Research.
Resumo:
This paper addresses the exploitation of overlapping communication with calculation within parallel FORTRAN 77 codes for computational fluid dynamics (CFD) and computational structured dynamics (CSD). The obvious objective is to overlap interprocessor communication with calculation on each processor in a distributed memory parallel system and so improve the efficiency of the parallel implementation. A general strategy for converting synchronous to overlapped communication is presented together with tools to enable its automatic implementation in FORTRAN 77 codes. This strategy is then implemented within the parallelisation toolkit, CAPTools, to facilitate the automatic generation of parallel code with overlapped communications. The success of these tools are demonstrated on two codes from the NAS-PAR and PERFECT benchmark suites. In each case, the tools produce parallel code with overlapped communications which is as good as that which could be generated manually. The parallel performance of the codes also improve in line with expectation.
Resumo:
In many practical situations, batching of similar jobs to avoid setups is performed while constructing a schedule. This paper addresses the problem of non-preemptively scheduling independent jobs in a two-machine flow shop with the objective of minimizing the makespan. Jobs are grouped into batches. A sequence independent batch setup time on each machine is required before the first job is processed, and when a machine switches from processing a job in some batch to a job of another batch. Besides its practical interest, this problem is a direct generalization of the classical two-machine flow shop problem with no grouping of jobs, which can be solved optimally by Johnson's well-known algorithm. The problem under investigation is known to be NP-hard. We propose two O(n logn) time heuristic algorithms. The first heuristic, which creates a schedule with minimum total setup time by forcing all jobs in the same batch to be sequenced in adjacent positions, has a worst-case performance ratio of 3/2. By allowing each batch to be split into at most two sub-batches, a second heuristic is developed which has an improved worst-case performance ratio of 4/3. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
Resumo:
This is the third in a series of six papers presenting key findings from a national study that was undertaken to investigate the role and responsibilities of midwives and to identify continuing educational need. The background to the study and the titles of the other papers in the series have been outlined in the first paper. Issues related to the way midwifery care is organized nationally are discussed in this paper. Midwives and supervisors indicated a strong commitment to providing woman-centred care in a caring and sensitive manner, often in the face of enormous structural and organizational change. This paper addresses key issues that arose for midwives and supervisors when planning and providing an optimum quality service.