376 resultados para Panicum zizanoides
Resumo:
The objective was to evaluate the leaf area index of six different grasses. The experiment was installed at the Instituto Federal de Tecnologia e Educacao of Uberaba, using a randomized block design with split plots in time. The plots were sown: Brachiaria decumbens cv. Basilisk, Brachiaria brizantha cv. Marandu, Panicum maximum cv. Mombasa, Panicum maximum cv. Tanzania, Brachiaria brizantha cv. Xaraes, Cynodon dactylon hb. Tifton and the plots, ten seasons of evaluation in 10 x 6 factorial arrangement with four replications. Rates of leaf area of each forage at different times of year were evaluated. Compared to other forage species, Panicum maximum had a higher leaf area index when subjected to periodic fertilization and irrigation. Only in the late fall Brachiaria Xaraes IAF had increased, but did not differ significantly from the others.
Resumo:
The objective of this work was to quantify methane (CH4) emission using the sulfur hexafluoride (SF6) tracer technique, by dairy cattle on pasture in Brazilian tropical field conditions. Measurements were performed in the rainy season, with Holstein and Holstein x Zebu crossbred, from lactating and dry cows and heifers grazing fertilized Tobiatã grass, and heifers grazing unfertilized Brachiaria grass. Methane and SF6 concentrations were determined by gas chromatograph. Methane emissions by lactating cows varied from 13.8 to 16.8 g/hour, by dry cows from 11.6 to 12.3 g/hour, by heifers grazing fertilized grass was 9.5 g/hour and by heifers grazing unfertilized grass varied from 7.6 to 8.3 g/hour or 66 to 72 kg/head/year. Methane emission per digestive dry matter intake (DMDI) varied from 42 to 69 g/kg DMDI for lactating cows, 46 to 56 g/kg for dry cows, 45 to 58 g/kg for heifers grazing fertilized grass and 58 to 62 g/kg for heifers in unfertilized grass pasture. The CH4 emission measured on dairy cattle feeding tropical grasses was higher than that observed for temperate climate conditions.
Resumo:
This study was carried out in January of two consecutive years. The objective was to evaluate the grazing time, the grazing rate and the milk production of crossbred cows, managed in two rotational grazing areas, one with elephant grass (Pennisetum purpureum Schum. cv. Guaçu) and another one with Tanzania grass (Panicum maximum Jacq. cv. Tanzania), both with natural shade in the rest area. The experiment was divided in two phases, the first with 12 cows that remained day and night in the paddock and were milked twice a day. In the second phase 15 cows were observed and remained 10.43 hours in the paddock during the day, and were kept in a corral during the night. Each cow was observed every 15 minutes. Grass specie had no effect on milk production in the two phases of the experiment. The grazing time was 564 and 474 minutes and the grazing rate was 28.7 and 24.4 minutes/hour for the Elephant grass and Tanzania grass, respectively, in first phase. In the second phase,the grazing time was 461 and 426 minutes and the grazing rate was 42.7 and 39.4 minutes/hour for the Elephant grass and Tanzania grass, respectively. Correlations were observed (P<0.01) between grazing rate and the minimum temperature (-0.68), the maximum temperature (-0.76), the relative humidity (0.44) and the THI (-0.76).
Resumo:
The purpose of this study was to realize a floristic survey in riparian forest remains of the Upper Paraná River, under domain of the submontane seasonal semideciduous forest, located in Porto Rico, Paraná, Brazil (53°19'3 W e 22°47'37 S). Within and in the neighborhood of 10.000 m2 area (100 m × 100 m), 165 species were surveyed, in 124 genera and 60 families, distributed in arboreous, shrubs, herbs, climbers and hemiparasites. Leguminosae, Myrtaceae, Poaceae, Rubiaceae, and Bignoniaceae were the families with the highest species' richness, showing together 33.33%, and the genera more representative were Eugenia, Casearia, Guarea, Inga, Panicum, and Solanum, with 12.73% of the species. Though the perturbations verified in the forest remains, eight species were rare for this type of vegetation and 12 were listed as fishes natural food.
Resumo:
The Marsh Antwren (Stymphalornis acutirostris) is restricted to the lowlands between Antonina Bay, in the coastal plain of the state of Paraná, and Itapocu river, in the northern coastal plain of the state of Santa Catarina (from 0 to c. 5 m a.s.l.). It doesn't occur continuously in this region, being found in eight populations that span over an total area of about 6,060 ha (= area of occupancy; 4,856.67 in Paraná and c. 1,200 in Santa Catarina). Nine habitat types used by the Marsh Antwren were defined, based on vegetation physiognomy, localization, dominancy of botanical species, dominant life-form and history of the region. Five of these are herbaceous (marshes), while four have an upper arboreal stratum and an herbaceous lower stratum with marsh plants. According to the classification criteria of the Brazilian vegetation proposed by the Radambrasil Project, they were classified as Pioneering Formation of Fluvial Influence, Pioneering Formation of Fluvial-marine Influence, and/or Pioneering Formation of Lacustrine Influence. They occur as patches or narrow strips ranging from 0.001 to 203.0 ha in the state of Paraná. They are found mainly in the interior of bays, in the lower courses of rivers that drain into bays, in alluvial plains, and between sand dunes in the coastal plain. Characteristic herbaceous species are cattail (Typha domingensis), bulrush (Scirpus californicus), Crinum salsum, Panicum sp. cf. P. mertensii, saw grass (Cladium mariscus) and Fuirena spp. Hibiscus pernambucensis is the characteristic bush species, and Calophyllum brasiliense, Tabebuia cassinoides, Annona glabra and Laguncularia racemosa are the characteristic arboreal species. The Marsh Antwren lives in herbaceous vegetation, but also uses bushes and branches of small tress. It has low flight capacity and a single flight of more than 25 m was never recorded. Territories of 0.25 ha were estimated in one kind of habitat (tidal marsh) (= 8 individuals per hectare) and of 3.2 ha in another one (saw grass marsh) (= 0.62 individual per hectare). The global population estimate is of about 17,700 mature individuals (13,700 in Paraná and 4,000 in Santa Catarina). The species is really under threat of extinction, mainly because of it's restricted geographical distribution and habitat loss by human activities and biological contamination caused by invasion of exotic grasses (Urochloa arrecta and Brachiaria mutica).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It was aimed to assess the effects of zinc in the development and nutrition of Tanzania grass. The experimental design used was fully randomized, consisting of six doses of zinc (0, 15, 30, 60, 120 and 240 mg dm'3) and four repetitions. The experimental unit was formed in a vase filled with a Red Latosol dystrophic (Zn = 0.4 mg dm). There were two cuts, the first after 53 days of transplanting seedlings and the second 35 days after the first cut. Was evaluated the concentration of zinc in the soil, the content of zinc leaf, the number of tillers, number of leaves, plant height, the dry mass of the shoot, root system and the whole plant. The doses of zinc influenced the concentration of zinc in soil and plant, and production of dry mass of Tanzania grass, especially the first cut. The Tanzania grass shows high tolerance to the toxicity of zinc, and toxic critical level of 273 mg kg-1.
Resumo:
Currently Brazil is one of the leading paper and pulp producers in the world market, where Sao Paulo State boasts the greatest production. Because of the pulp prices falling in the world market and the low costs of a second coppice rotation, two experiments (started May and December, 2000) were conducted to evaluate the effects of weeds and of weed-free periods (0, 3, 6, 9, 12, 15 and 18 months) on the growth of Eucalyptus grandis second coppice plants. The field trials were set up in a randomized block design with four replicates and the experimental plots consisted of three rows of fve plants. The December weed community was composed mainly of Brachiaria decumbens (Surinam grass) and Panicum maximum (Guinea grass) and the May weed community was composed mainly by B. decumbens and Digitaria insularis (Sour-grass). Weeds had a low negative influence on growth, diameter development and macronutrients content of E. grandis second coppice plants. In both experiments, slight reductions in growth were observed only between the fully weeded and weed-free periods, after 18 months.
Resumo:
This study aimed to evaluate the guinea grass effect (Panicum maximum) on the initial growth of different Eucalyptus × urograndis clones. Two assays were established with eucalyptus clones and guinea grass seedlings. The plants were grown in plots with cement borders filled with soil. Each plot received a eucalyptus seedling. The first assay had a completely randomized experimental design, with three replications, and treatments in a 5x2 factorial scheme (five eucalyptus clones and the absence or presence of two guinea grass plants at 10 cm distance from eucalyptus seedling). The second assay was similar to the first, however with three eucalyptus clones. The experimental design was completely randomized, with five replications, and a 3x2 factorial scheme (three eucalyptus clones and the absence or presence of two guinea grass plants). The presence of eucalyptus clones did not affect guinea grass development. The eucalyptus clones that coexisted with guinea grass plants did not show differences in their development, making the clones equal when under competition. The most susceptible characteristics of eucalyptus clones to guinea grass were foliar area, shoot and stem dry matter. Clone 3 showed the most sensitivity to guinea grass, and clone 1 was the most tolerant, but all clones studied suffered a negative interference from guinea grass.
Resumo:
This experiment was carried out to evaluate canopy height of guinea grass with 95% of photosynthetic active radiation interception and quantify the nitrogen fertilization influence and plants' density on the morphogenesis and structural characteristics of Tanzania grass. Four doses of N (0, 80, 160 e 320 kg.ha -1), were arranged with three plant densities (9, 25 and 49 plants.m -2), according to 4 × 3 completely randomized design, with three repetitions. Total dry matter (DM) accumulation throughout the experimental period was influenced by nitrogen fertilization and plants' density. In the rainy period, the higher nitrogen fertilization decreased the harvesting intervals, and consequently, increased the number of harvests. The rate of leaf appearance and the phyllochron were influenced only under nitrogen fertilization in the transition period of rainy and dry weather. Tanzania grass canopy height under 95% of light interception was positively influenced because of the plant densities in rainy period and transition period between rainy/drought and drought. Tanzania grass height under 95% of light interception presented variations along the evaluations and the values were higher (near 70 cm) in the rainy period, followed by transition period rain/drought and drought. © 2011 Sociedade Brasileira de Zootecnia.
Resumo:
The knowledge of interaction between infective larvae setting and the type of grass is important to epidemiological studies and the control of gastrointestinal nematodes in sheep. The objective of this work was to evaluate the effects of three species of forage grasses on pasture characteristics and the vertical distribution of infective larvae (L3) of gastrointestinal nematodes of woolless sheep on the grasses during the rainy season. Sixty non-periparturients ewes were used, naturally infected, equally distributed on 2ha paddocks sowed with Tanzania, star, and gamba grasses, managed under continuous grazing system, from October 2003 to March 2004, at Santa Bárbara farm, Barreiras-Bahia-Brazil. Data of three samples between December 2003 and March 2004 were analyzed by SAS, using split-plot design, with 10 replications. Infective larvae of Haemonchus spp. and Trichostrongylus spp. were observed on forage in all stratus of vertical layer of the grasses without a defined pattern. Pastures with different characteristics under continuous grazing system had good conditions for developing infective larvae of sheep.
Resumo:
In Brazil the intensive agriculture use, mainly pasture, is the main cause of the presence of extensive areas of degraded lands. This study aimed to assess the impact of different soil management practices in a pasture degraded area used as garbage disposal. The experiment was performed at the Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas - UNICAMP, in Campinas, state of São Paulo, Brazil, from 1990 to 1996. This area has undergone a process of recovery through removal of trash deposited on the surface, in 1985, levelling of soil, followed by application of limestone, subsoiling, planting of legumes (Crotalaria juncea) and crop rotation (soybean and maize). Since 1990 only popcorn maize was grown and established plots managed with different soil tillage systems, including harrow, chisel plow, moldboard plow, no tillage, disk plow and revolving hoe. One plot was planted exclusively with guinea grass (Panicum maximum) to serve as a reference for minimum loss of soil and another grown on a downhill direction to correspond to the expected maximum erosion. There were differences in sediment loss, nutrient loss and productivity of the popcorn maize in the period analyzed. The chisel plow and no tillage treatments caused the slightest loss of soil and nutrients, compared to other tillage systems. The results show that the soil management systems influenced the physical and chemical characteristics of soil, allowing an economical and environmental recovery of the area, providing the conditions for grain agricultural production.
Resumo:
Upland rice (Oryza sativa L.) cultivation has been increasing in importance in Asia while water availability for irrigation has been decreasing because of rapid growth in industry and urban centers. Therefore, the development of technologies that increase upland rice yields under aerobic conditions, thereby saving water, would be an effective strategy to avoid a decrease in global rice grain production. The use of the no-tillage system (NTS) and cover crops that maintain soil moisture would prove advantageous in the move toward sustainable agriculture. However, upland rice develops better in plowed soil, and it has been reported that this crop does not perform well under the NTS. Therefore, the aim of this study was to investigate the effect of cover crops on upland rice grain yield and yield components sowed in a NTS. A field experiment was conducted during two growing seasons (2008-2009 and 2009-2010), and treatments consisted of growing rice under five cover crops in a NTS and two control treatments under the conventional tillage system (plowing once and disking twice). Treatments were carried out in a randomized block design with three replications. Our findings are as follows: On average, Brachiaria brizantha (12.32Mgha-1), Brachiaria ruziziensis (11.08Mgha-1) and Panicum maximum (11.62Mgha-1) had outstanding biomass production; however, these grasses provided the worst upland rice yields (2.30, 2.04, and 2.67Mgha-1, respectively) and are not recommended as cover crops before upland rice. Millet and fallow exhibited the fastest straw degradation (half-lives of 52 and 54 days, respectively), and millet exhibited the fastest nitrogen release (N half-life of 28 days). The use of a NTS was promising when millet was used as a cover crop; this allowed the highest upland rice yield (3.94Mgha-1) and did not statistically differ from plowed fallow (3.52Mgha-1). © 2012 Elsevier B.V.
Resumo:
Intercropping corn (Zea mays L.) with forages, such as palisadegrass {Urochloa brizantha (Hochst. ex A. rich.) r. D. Webster [syn. Brachiaria brizantha (Hochst. ex A. rich.) Stapf]} or guineagrass [Megathyrsus maximus (Jacq.) B. K. Simon & S. W. L. Jacobs (syn. Panicum maximum Jacq.)], provides large amounts of biomass for use as straw in no-tillage systems or as pasture. However, it is important to evaluate what time these forages have to be sown into corn systems to avoid reductions in both corn and forage production. This study, conducted for three growing seasons at Botucatu, Brazil, evaluated nutrient concentration and yield of corn as affected by time of forage intercropped as well as forage's dry matter production. our data showed that intercropping systems did not reduce leaf nutrient concentrations and grain yield of corn in relation to sole corn. The simultaneous intercropping of corn and guineagrass resulted in the lowest plant population (51, 200 plant ha-1), number of ears per plant (1.0), and, consequently, the lowest corn grain yield (9801 kg ha-1). Guineagrass seeded at the time of corn fertilizer topdressing resulted in the highest plant population (59, 400 plants ha-1), number of ears per plant (1.2), and corn grain yield (12, 077 kg ha-1). Forage production was highest when intercrop was done simultaneously. palisadegrass could be intercropped with corn both simultaneously or at topdressing fertilization stage. In contrast, it is recommended that guineagrass should only be intercropped with corn at topdressingfertilization. © Crop Science Society of America.
Resumo:
Physical fractions (free light fraction, intra-aggregate light fraction and heavy fraction) of soil organic matter (SOM) are good indicators of soil quality for sustainable land use. The objective of this study was to evaluate the effect of cover crops on total organic carbon (TOC) and physical fractions of soil organic matter in soil under a no-tillage system (NTS) and a conventional tillage system (CTS, one plowing and two disking). A three-year field experiment was carried out as a cover crop-rice (Oryza sativa)-cover crop-rice rotation. Treatments included cover crops (Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and pearl millet (Pennisetum glaucum), fallow, till or no till. The SOM was physically fractionated in free light fraction (FLF), intra-aggregates light fraction (IALF) and heavy fraction (HF). The levels of C in whole soil were also evaluated, as well as C in the light fractions (FLF+IALF) and in the HF. Results indicated that concentrations of C in the FLF and IALF in surface soils (0-0.05m) were much higher (10.8 and 1.95gkg-1, respectively) than that in the 0.05-0.1m soil depth (7.68 and 1.54gkg-1, respectively) and in the 0.1-0.2m soil depth (4.98 and 1.24gkg-1, respectively). The NTS resulted in higher levels of FLF (12.2gkg-1) and IALF (2.19gkg-1) than with CTS (1.37-7.30gkg-1). Millet had the highest C (19.5gkg-1) and N (1.1gkg-1) concentrations in soil. There was an accumulation of TOC and total N in the surface soil with cover crops, and concentrations of TOC were higher in the HF (79.0%) than in the light fractions (21.0%). Although SOM changed little during the two years of this experiment, the various C fractions were significantly affected by the tillage treatments. We conclude that SOM physical fractionation allowed seeing significant differences caused by the soil management in the organic matter dynamics in a short period of time. © 2013 Elsevier B.V.