999 resultados para Painéis estruturais danificados
Resumo:
Nowadays, classifying proteins in structural classes, which concerns the inference of patterns in their 3D conformation, is one of the most important open problems in Molecular Biology. The main reason for this is that the function of a protein is intrinsically related to its spatial conformation. However, such conformations are very difficult to be obtained experimentally in laboratory. Thus, this problem has drawn the attention of many researchers in Bioinformatics. Considering the great difference between the number of protein sequences already known and the number of three-dimensional structures determined experimentally, the demand of automated techniques for structural classification of proteins is very high. In this context, computational tools, especially Machine Learning (ML) techniques, have become essential to deal with this problem. In this work, ML techniques are used in the recognition of protein structural classes: Decision Trees, k-Nearest Neighbor, Naive Bayes, Support Vector Machine and Neural Networks. These methods have been chosen because they represent different paradigms of learning and have been widely used in the Bioinfornmatics literature. Aiming to obtain an improvment in the performance of these techniques (individual classifiers), homogeneous (Bagging and Boosting) and heterogeneous (Voting, Stacking and StackingC) multiclassification systems are used. Moreover, since the protein database used in this work presents the problem of imbalanced classes, artificial techniques for class balance (Undersampling Random, Tomek Links, CNN, NCL and OSS) are used to minimize such a problem. In order to evaluate the ML methods, a cross-validation procedure is applied, where the accuracy of the classifiers is measured using the mean of classification error rate, on independent test sets. These means are compared, two by two, by the hypothesis test aiming to evaluate if there is, statistically, a significant difference between them. With respect to the results obtained with the individual classifiers, Support Vector Machine presented the best accuracy. In terms of the multi-classification systems (homogeneous and heterogeneous), they showed, in general, a superior or similar performance when compared to the one achieved by the individual classifiers used - especially Boosting with Decision Tree and the StackingC with Linear Regression as meta classifier. The Voting method, despite of its simplicity, has shown to be adequate for solving the problem presented in this work. The techniques for class balance, on the other hand, have not produced a significant improvement in the global classification error. Nevertheless, the use of such techniques did improve the classification error for the minority class. In this context, the NCL technique has shown to be more appropriated
Resumo:
Present work proposed to map and features the wear mechanisms of structural polymers of engineering derived of the sliding contact with a metallic cylindrical spindle submitted to eccentricity due to fluctuations in it is mass and geometric centers. For this it was projected and makes an experimental apparatus from balancing machine where the cylindrical counterbody was supported in two bearings and the polymeric coupon was situated in a holder with freedom of displacement along counterbody. Thus, the experimental tests were standardized using two position of the two bearings (Fixed or Free) and seven different positions along the counterbody, that permit print different conditions to the stiffness from system. Others parameters as applied normal load, sliding velocity and distance were fixed. In this investigation it was used as coupon two structural polymers of wide quotidian use, PTFE (polytetrafluroethylene) and PEEK (poly-ether-ether-ketone) and the AISI 4140 alloy steel as counterbody. Polymeric materials were characterized by thermal analysis (thermogravimetric, differential scanning calorimetry and dynamic-mechanical), hardness and rays-X diffractometry. While the metallic material was submitted at hardness, mechanical resistance tests and metallographic analysis. During the tribological tests were recorded the heating response with thermometers, yonder overall velocity vibration (VGV) and the acceleration using accelerometers. After tests the wear surface of the coupons were analyzed using a Scanning Electronic Microscopy (SEM) to morphological analysis and spectroscopy EDS to microanalysis. Moreover the roughness of the counterbody was characterized before and after the tribological tests. It was observed that the tribological response of the polymers were different in function of their distinct molecular structure. It were identified the predominant wear mechanisms in each polymer. The VGV of the PTFE was smaller than PEEK, in the condition of minimum stiffness, in function of the higher loss coefficient of that polymer. Wear rate of the PTFE was more of a magnitude order higher than PEEK. With the results was possible developed a correlation between the wear rate and parameter (E/ρ)1/2 (Young modulus, E, density, ρ), proportional at longitudinal elastic wave velocity in the material.
Resumo:
The search for alternative materials with lower density, reduction in heat transfer and propagation of noise associated with the ease of handling and application in concrete structures, represents an enormous challenge in the formulation and knowledge of the performance of self-compacting lightweight concrete, which has technology little known nationally, and appears on the international scene as an innovative material and alternative to conventional concrete. Based on these, this study set out to study self-compacting lightweight concrete made with two distinct grades of expanded clay associated with the addition of plasticizing/superplasticizers additives and mineral additions of metakaolin and bagasse ash of sugar cane. There is also an object of study, evaluation of pozzolanic activity of mineral admixtures and their influence on the durability characteristics of concrete. The rheological, physical, mechanical and microstructural analysis in this study served as basis in the classification of concretes autoadensáveis, targeting the national technical requirements for their classification in the category autoadensável and lightweight structural. The inclusion of mineral admixtures (metakaolin and bagasse ash of sugar cane), partial replacement of cement, pozzolanic activity and demonstrated maintenance of mechanical properties through the filler effect, a reduction of up to 76% of the nitrogen gas permeability in blend with 20% bagasse ash. All concretes had rheology (cohesion and consistency) suitable for self-adensability as well as strength and density inherent structural lightweight concrete without presenting phenomena of segregation and exudation
Resumo:
New materials made from industrial wastes have been studied as an alternative to traditional fabrication processes in building and civil engineering. These materials are produced considering some issues like: cost, efficiency and reduction of nvironmental damage. Specifically in cases of materials destined to dwellings in low latitude regions, like Brazilian Northeast, efficiency is related to mechanical and thermal resistance. Thus, when thermal insulation and energetic efficiency are aimed, it s important to increase thermal resistance without depletion of mechanical properties. This research was conducted on a construction element made of two plates of cement mortar, interspersed with a plate of recycled expanded polystyrene (EPS). This component, widely known as sandwich-panel, is commonly manufactured with commercial EPS whose substitution was proposed in this study. For this purpose it was applied a detailed methodology that defines parameters to a rational batching of the elements that constitute the nucleus. Samples of recycled EPS were made in two different values of apparent specific mass (ρ = 65 kg/m³; ρ = 130 kg/m³) and submitted to the Quick-Line 30TM that is a thermophysical properties analyzer. Based on the results of thermal conductivity, thermal capacity and thermal diffusivity obtained, it was possible to assure that recycled EPS has thermal insulation characteristics that qualify it to replace commercial EPS in building and civil engineering industry
Resumo:
To enhance the maintenance practices, Oil and Gas Pipelines are inspected from the inside by automated systems called PIG (Pipeline Inspection Gauge). The inspection and mapping of defects, as dents and holes, in the internal wall of these pipelines are increasingly put into service toward an overall Structural Integrity Policy. The residual life of these structures must be determined such that minimize its probability of failure. For this reason, the investigation on the detection limits of some basic topological features constituted by peaks or valleys disposed along a smooth surface is of great value for determining the sensitivity of the measurements of defects from some combinations of circumferential, axial and radial extent. In this investigation, it was analyzed an inductive profilometric sensor to scan three races, radius r1, r2, r3, in a circular surface of low carbon steel, equipped with eight consecutive defects simulated by bulges and holes by orbit, equally spaced at p/4 rad. A test rig and a methodology for testing in laboratory were developed to evaluate the sensor response and identify their dead zones and jumps due to fluctuations as a function of topological features and scanning velocity, four speeds different. The results are presented, analyzed and suggestions are made toward a new conception of sensor topologies, more sensible to detect these type of damage morphologies
Resumo:
This study aimed to evaluate the effects of increasing doses of nitrogen on the morphogenesis, structural and productive grass Panicum maximum cvs. Mombaca and Tanzania, and Brachiaria sp. Mulato. The experiment was conducted under field conditions. The experimental design was randomized blocks in a 3x4 factorial design with three forages (Panicum maximum cvs. Tanzania and Mombaca and Brachiaria sp. cv. Mulato), four N rates (0, 40, 80 and 160 kg ha(-1)) with three replications. Were evaluated the following parameters: fresh matter production (FMP), dry matter production (DMP), plant height, percentage of dry matter, leaves per tiller, dry matter accumulation rate (DMAR) and nitrogen use efficiency (NUE). Grasses Mombasa and Tanzania showed similar results, and both were superior to Mulato grass for the production of fresh and dry matter. The three species responded to nitrogen application, with an increase in FMP, DMP, DMAR, height and number of tillers. The maximum efficiency in use of N was obtained with a dose of 120 kg ha(-1).
Resumo:
The present study investigates how the inter-relationship of the content of polynomial equations works with structured activities and with the history of mathematics through a sequence of activities presented in an e-book, so that the result of this research will proceed will result in a didactic and pedagogic proposal for the teaching of polynomial equations in a historical approach via the reported e-book. Therefore, we have considered in theoretical and methodological assumptions of the History of Mathematics, in structured activities and new technologies with an emphasis on e-book tool. We used as a methodological approach the qualitative research, as our research object adjusts to the objectives of this research mode. As methodological instruments, we used the e-book as a synthesis tool of the sequence of activities to be evaluated, while the questionnaires, semi-structured interviews and participant observation were designed to register and analyze the evaluation made by the research, participants in the structured activities. The processing and analysis of data collected though the questionnaires were organized, classified and quantified in summary tables to facilitate visualization, interpretation, understanding, and analysis of these data. As for participant observation was used to contribute to the qualitative analysis of the quantified data. The interviews were synthetically transcribed and qualitatively analyzed. The analysis ratified our research objectives and contributed to improve, approve and indicate the use of e-book for the teaching of polynomial equations. Thus, we consider that this educational product will bring significant contributions to the teaching of mathematical content, in Basic Education
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
In this work we present a study of structural, electronic and optical properties, at ambient conditions, of CaSiO3, CaGeO3 and CaSnO3 crystals, all of them a member of Ca-perovskite class. To each one, we have performed density functional theory ab initio calculations within LDA and GGA approximations of the structural parameters, geometry optimization, unit cell volume, density, angles and interatomic length, band structure, carriers effective masses, total and partial density of states, dielectric function, refractive index, optical absorption, reflectivity, optical conductivity and loss function. A result comparative procedure was done between LDA and GGA calculations, a exception to CaSiO3 where only LDA calculation was performed, due high computational cost that its low symmetry crystalline structure imposed. The Ca-perovskite bibliography have shown the absence of electronic structure calculations about this materials, justifying the present work
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The production of forage grasses is directly related to the morphogenesis. The knowledge of the morphogenetic and structural variables of forage plants is important for determining appropriate conditions of grazing livestock to ensure efficient and sustainable. Thus the objective of this study was to evaluate morphogenetic and structural responses of three genera of grasses, Brachiaria, Panicum and Cenchrus in a cutting regime. The experimental design was randomized blocks with three replications and six treatments. After each section were evaluated for forage production, appearance and elongation rates of leaves and stem, phyllochron, final leaf length, number of living leaves, leaf lifespan, leaf senescence rate, tiller density and tiller dynamics. On forage yield the highest values were obtained in cultivars Xaraes, Piata and Massai. The tiller density was higher for cv Massai. It is concluded that the cultivars of Panicum and Brachiaria had a higher tillering dynamics in increasing the turnover rate of tissues that are indicators of forage production, assuming that the cultivars of these genera are predisposed to use forage in the Northeast
Resumo:
Ligas de alumínio são extensamente usadas em partes aeronáuticas devido às boas propriedades mecânicas e baixa densidade. Estas partes devem ser unidas para formar conjuntos maiores. Uma junta estrutural é definida como um segmento de estrutura que provê um meio de transferir carga de um elemento estrutural para outro. A maioria das juntas aeronáuticas é mecanicamente fixada com múltiplos prendedores (parafusos ou rebites). Estas juntas apresentam uma alta concentração de tensões ao redor do prendedor, porque a transferência de carga entre elementos da junta acontece em uma fração da área disponível. Por outro lado, as cargas aplicadas em juntas adesivas são distribuídas sobre toda a área colada e reduz os pontos de concentração de tensão. Juntas são a fonte mais comum de falhas estruturais em aeronaves e quase todos os reparos envolvem juntas. Portanto, é importante entender todos os aspectos de projeto e análise de juntas. O objetivo deste trabalho é comparar estaticamente juntas estruturais de ligas de Al2024-T3 em três condições: juntas mecanicamente rebitadas, juntas coladas e uma configuração híbrida rebitada e colada. Foi usada a norma NASM 1312-4 para confecção dos corpos-de-prova. Além disso, foram conduzidos testes de fadiga, sob amplitude de carregamento constante e razão de tensão igual a 0,1 para avaliar a eficiência dos elementos estruturais durante sua vida em serviço. Os resultados mostraram que a configuração híbrida apresenta maior resistência estática e uma vida em fadiga superior à configuração colada.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper is set in a scenario in which higher education institutions suffer from external pressure to increase efficiency. The legislation after the Law of Directives and Bases for Education (LDBE), from 1996, is characterized by the fragmentation in its implementation, raising a concern with flexibility and innovation in several normative devices as well as aspects that must be incorporated to its organizational structure. The policies examined in this thesis are: Distance Education (DE); Law of Innovation and the Program of Support to Restructuring and Expansion of Federal Universities (PSREFU). This thesis aims to observe to what extent the characteristics of innovation and flexibility, which mark the new post- LDBE educational legislation, influence the organizational redesign of the Federal University of Ceará (UFC). For being about implementation policies, using contingency approach in order to collect the internal dynamics permeating the redesign of higher education institutions, the thesis focuses on the impacts caused by flexibility and innovation. This is a qualitative research, with case study methods, archive research and semi-structured interviews with members of the university administration. The results don t allow us to confirm the adoption of a more flexible and innovative configuration in the university but it is possible to identify the presence of those elements in the implementation changes, characterizing the hybrid structure. The changes mainly expose the extension of the management of projects to the administrative and academic components related to the institution. In terms of projection, the study found changes in the elements which characterize the current setting and the tendency of the university for adopting a diverse organizational structure. However, if the decentralization of management persists, the academic units may adopt their own structural solutions, but with no evidence of changes in the professional organization in most units. In this perspective, this thesis states that there are difficulties when incorporating innovation and flexibility to their organizational structure, which lead to improvised solutions, superposing skills through the redundancy of structures created with the same purpose or copying exogenous solutions