987 resultados para POST-PUBERTAL RATS
Resumo:
Abstract Background Neonatal STZ treatment induces a state of mild hyperglycemia in adult rats that disrupts metabolism and maternal/fetal interactions. The aim of this study was investigate the effect of neonatal STZ treatment on the physical development, behavior, and reproductive function of female Wistar rats from infancy to adulthood. Methods At birth, litters were assigned either to a Control (subcutaneous (s.c.) citrate buffer, n = 10) or STZ group, (streptozotocin (STZ) - 100 mg/kg-sc, n = 6). Blood glucose levels were measured on postnatal days (PND) 35, 84 and 120. In Experiment 1 body weight, length and the appearance of developmental milestones such as eye and vaginal opening were monitored. To assess the relative contribution of the initial and long term effects of STZ treatment this group was subdivided based on blood glucose levels recorded on PND 120: STZ hyperglycemic (between 120 and 300 mg/dl) and STZ normoglycemic (under 120 mg/dl). Behavioral activity was assessed in an open field on PND 21 and 75. In Experiment 2 estrous cyclicity, sexual behavior and circulating gonadotropin, ovarian steroid, and insulin levels were compared between control and STZ-hyperglycemic rats. In all measures the litter was the experimental unit. Parametric data were analyzed using one-way or, where appropriate, two-way ANOVA and significant effects were investigated using Tukey’s post hoc test. Fisher’s exact test was employed when data did not satisfy the assumption of normality e.g. presence of urine and fecal boli on the open field between groups. Statistical significance was set at p < 0.05 for all data. Results As expected neonatal STZ treatment caused hyperglycemia and hypoinsulinemia in adulthood. STZ-treated pups also showed a temporary reduction in growth rate that probably reflected the early loss of circulating insulin. Hyperglycemic rats also exhibited a reduction in locomotor and exploratory behavior in the open field. Mild hyperglycemia did not impair gonadotropin levels or estrous cylicity but ovarian steroid concentrations were altered. Conclusions In female Wistar rats, neonatal STZ treatment impairs growth in infancy and results in mild hyperglycemia/hypoinsulinemia in adulthood that is associated with changes in the response to a novel environment and altered ovarian steroid hormone levels.
Resumo:
Photodynamic therapy (PDT) is based on the synergism of a photosensitive drug (a photosensitizer) and visible light to destroy target cells (e.g., malignant, premalignant, or bacterial cells). The aim of this study was to investigate the response of normal rat tongue mucosa to PDT following the topical application of hematoporphyrin derivative (Photogem®), Photodithazine®, methylene blue (MB), and poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with MB. One hundred and thirty three rats were randomly divided in various groups: the PDT groups were treated with the photosensitizers for 10 min followed by exposure to red light. Those in control groups received neither photosensitizer nor light, and they were subjected to light exposure alone or to photosensitizer alone. Fluorescent signals were obtained from tongue tissue immediately after the topical application of photosensitizers and 24 h following PDT. Histological changes were evaluated at baseline and at 1, 3, 7, and 15 days post-PDT treatment. Fluorescence was detected immediately after the application of the photosensitizers, but not 24 h following PDT. Histology revealed intact mucosa in all experimental groups at all evaluation time points. The results suggest that there is a therapeutic window where PDT with Photogem®, Photodithazine®, MB, and MB-loaded PLGA nanoparticles could safely target oral pathogenic bacteria without damaging normal oral tissue.
Resumo:
Objective: Central to the process of osseointegration is the recruitment of mesenchymal progenitor cells to the healing site, their proliferation and differentiation to bone synthesising osteoblasts. The process is under the control of pro-inflammatory cytokines and growth factors. The aim of this study was to monitor these key stages of osseointegration and the signalling milieu during bone healing around implants placed in healthy and diabetic bone. Methods: Implants were placed into the sockets of incisors extracted from the mandibles of normal Wistar and diabetic Goto-Kakizaki rats. Mandibles 1-12 weeks post-insertion of the implant were examined by histochemistry and immunocytochemistry to localise the presence of Stro-1- positive mesenchymal progenitor cells, proliferating cellular nuclear antigen proliferative cells, osteopontin and osteocalcin, macrophages, pro-inflammatory cytokines interleukin (IL)-1 , IL-6, tumour necrosis factor (TNF)- and tumour growth factor (TGF)- 1. Image analysis provided a semi-quantification of positively expressing cells. Results: Histological staining identified a delay in the formation of mineralised bone around implants placed in diabetic animals. Within the diabetic bone, the migration of Stro-1 mesenchymal cells in the healing tissue appeared to be unaffected. However, in the diabetic healing bone, the onset of cell proliferation and osteoblast differentiation were delayed and subsequently prolonged compared with normal bone. Similar patterns of change were observed in diabetic bone for the presence of IL-1 , TNF- , macrophages and TGF- 1. Conclusion: The observed alterations in the extracellular presence of pro-inflammatory cytokines, macrophages and growth factors within diabetic tissues that correlate to changes in the signalling milieu, may affect the proliferation and differentiation of mesenchymal progenitor cells in the osseointegration process. To cite this article: Colombo JS, Balani D, Sloan AJ, St Crean J, Okazaki J, Waddington RJ. Delayed osteoblast differentiation and altered inflammatory response around implants placed in incisor sockets of type 2 diabetic rats Clin. Oral Impl. Res22, 2011; 578-586 doi: 10.1111/j.1600-0501.2010.01992.x.
Resumo:
The effect of prolonged electroporation-mediated human interleukin-10 (hIL-10) overexpression 24 hours before transplantation, combined with sequential human hepatocyte growth factor (HGF) overexpression into skeletal muscle on day 5, on rat lung allograft rejection was evaluated. Left lung allotransplantation was performed from Brown-Norway to Fischer-F344 rats. Gene transfer into skeletal muscle was enhanced by electroporation. Three groups were studied: group I animals (n = 5) received 2.5 μg pCIK-hIL-10 (hIL-10/CMV [cytomegalovirus] early promoter enhancer) on day -1 and 80 μg pCIK-HGF (HGF/CMV early promoter enhancer) on day 5. Group II animals (n = 4) received 2.5 μg pCIK-hIL-10 and pUbC-hIL-10 (hIL-10/pUbC promoter) on day -1. Control group III animals (n = 4) were treated by sham electroporation on days -1 and 5. All animals received daily nontherapeutic intraperitoneal dose of cyclosporin A (2.5 mg/kg) and were sacrificed on day 15. Graft oxygenation and allograft rejection were evaluated. Significant differences were found between study groups in graft oxygenation (Pao(2)) (P = .0028; group I vs. groups II and III, P < .01 each). Pao(2) was low in group II (31 ± 1 mm Hg) and in group III controls (34 ± 10 mm Hg), without statistically significant difference between these 2 groups (P = .54). In contrast, in group I, Pao(2) of recipients sequentially transduced with IL-10 and HGF plasmids was much improved, with 112 ± 39 mm Hg (vs. groups II and III; P < .01 each), paralleled by reduced vascular and bronchial rejection (group I vs. groups II and III, P < .021 each). Sequential overexpression of anti-inflammatory cytokine IL-10, followed by sequential and overlapping HGF overexpression on day 5, preserves lung function and reduces acute lung allograft rejection up to day 15 post transplant as compared to prolonged IL-10 overexpression alone.
Resumo:
Mechanical ventilation (MV) is life-saving but potentially harmful for lungs of premature infants. So far, animal models dealt with the acute impact of MV on immature lungs, but less with its delayed effects. We used a newborn rodent model including non-surgical and therefore reversible intubation with moderate ventilation and hypothesized that there might be distinct gene expression patterns after a ventilation-free recovery period compared to acute effects directly after MV. Newborn rat pups were subjected to 8 hr of MV with 60% oxygen (O(2)), 24 hr after injection of lipopolysaccharide (LPS), intended to create a low inflammatory background as often recognized in preterm infants. Animals were separated in controls (CTRL), LPS injection (LPS), or full intervention with LPS and MV with 60% O(2) (LPS + MV + O(2)). Lungs were recovered either directly following (T:0 hr) or 48 hr after MV (T:48 hr). Histologically, signs of ventilator-induced lung injury (VILI) were observed in LPS + MV + O(2) lungs at T:0 hr, while changes appeared similar to those known from patients with chronic lung disease (CLD) with fewer albeit larger gas exchange units, at T:48 hr. At T:0 hr, LPS + MV + O(2) increased gene expression of pro-inflammatory MIP-2. In parallel anti-inflammatory IL-1Ra gene expression was increased in LPS and LPS + MV + O(2) groups. At T:48 hr, pro- and anti-inflammatory genes had returned to their basal expression. MMP-2 gene expression was decreased in LPS and LPS + MV + O(2) groups at T:0 hr, but no longer at T:48 hr. MMP-9 gene expression levels were unchanged directly after MV. However, at T:48 hr, gene and protein expression increased in LPS + MV + O(2) group. In conclusion, this study demonstrates the feasibility of delayed outcome measurements after a ventilation-free period in newborn rats and may help to further understand the time-course of molecular changes following MV. The differences obtained from the two time points could be interpreted as an initial transitory increase of inflammation and a delayed impact of the intervention on structure-related genes.
Resumo:
OBJECTIVE(S): Even though the mechanism is not clearly understood, direct intramyocardial cell transplantation has demonstrated potential to treat patients with severe heart failure. We previously reported on the bioengineering of myoblast-based constructs. We investigate here the functional outcome of infarcted hearts treated by implantation of myoblast-seeded scaffolds. METHODS: Adult Lewis rats with echocardiography-confirmed postinfarction reduced ejection fraction (48.3% +/- 1.1%) were randomized to (1) implantation of myoblast-seeded polyurethane patches at the site of infarction (PU-MyoB, n = 11), (2) implantation of nonseeded polyurethane patches (PU, n = 11), (3) sham operation (Sham, n = 12), and (4) direct intramyocardial myoblast injection (MyoB, n = 11). Four weeks later, the functional assessment by echocardiography was repeated, and we additionally performed left ventricular catheterization plus histologic studies. RESULTS: The ejection fraction significantly decreased in the PU (39.1% +/- 2.3%; P = .02) and Sham (39.9% +/- 3.5%; P = .04) groups, whereas it remained stable in the PU-MyoB (48.4% +/- 3.1%) and MyoB (47.9% +/- 3.0%) groups during the observation time. Similarly, left ventricular contractility was significantly higher in groups PU-MyoB (4960 +/- 266 mm Hg/s) and MyoB (4748 +/- 304 mm Hg/s) than in groups PU (3909 +/- 248 mm Hg/s, P = .01) and Sham (4028 +/- 199 mm Hg/s, P = .01). Immunohistology identified a high density of myoblasts within the seeded scaffolds without any migration toward the host cardiac tissue and no evidence of cardiac cell differentiation. CONCLUSIONS: Myoblast-seeded polyurethane scaffolds prevent post-myocardial infarction progression toward heart failure as efficiently as direct intramyocardial injection. The immunohistologic analysis suggests that an indirect mechanism, potentially a paracrine effect, may be assumed.
Resumo:
The rodent model of myocardial infarction (MI) is extensively used in heart failure studies. However, long-term follow-up of echocardiographic left ventricular (LV) function parameters such as the myocardial performance index (MPI) and its ratio with the fractional shortening (LVFS/MPI) has not been validated in conjunction with invasive indexes, such as those derived from the conductance catheter (CC). Sprague-Dawley rats with left anterior descending coronary artery ligation (MI group, n = 9) were compared with a sham-operated control group (n = 10) without MI. Transthoracic echocardiography (TTE) was performed every 2 wk over an 8-wk period, after which classic TTE parameters, especially MPI and LVFS/MPI, were compared with invasive indexes obtained by using a CC. Serial TTE data showed significant alterations in the majority of the noninvasive functional and structural parameters (classic and novel) studied in the presence of MI. Both MPI and LVFS/MPI significantly (P < 0.05 for all reported values) correlated with body weight (r = -0.58 and 0.76 for MPI and LVFS/MPI, respectively), preload recruitable stroke work (r = -0.61 and 0.63), LV end-diastolic pressure (LVEDP) (r = 0.82 and -0.80), end-diastolic volume (r = 0.61 and -0.58), and end-systolic volume (r = 0.46 and -0.48). Forward stepwise linear regression analysis revealed that, of all variables tested, LVEDP was the only independent determinant of MPI (r = 0.84) and LVFS/MPI (r = 0.83). We conclude that MPI and LVFS/MPI correlate strongly and better than the classic noninvasive TTE parameters with established, invasively assessed indexes of contractility, preload, and volumetry. These findings support the use of these two new noninvasive indexes for long-term analysis of the post-MI LV remodeling.
Resumo:
Free-floating roller tube cultures of human fetal (embryonic age 6-10 weeks post-conception) and rat fetal (embryonic day 13) ventral mesencephalon were prepared. After 7-15 days in vitro, the mesencephalic tissue cultures were transplanted into the striatum of adult rats that had received unilateral injections of 6-hydroxydopamine into the nigrostriatal bundle 3-5 weeks prior to transplantation. Graft survival was assessed in tyrosine hydroxylase (TH)-immunostained serial sections of the grafted brains up to post-transplantation week 4 for the human fetal xenografts and post-transplantation week 11 for the rat fetal allografts. D-amphetamine-induced rotation was monitored up to 10 weeks after transplantation in the allografted animals and compared with that of lesioned-only control animals. All transplanted animals showed large, viable grafts containing TH-immunoreactive (ir) neurons. The density of TH-ir neurons in the human fetal xenografts and in rat fetal allografts was similar. A significant amelioration of the amphetamine-induced rotation was observed in the animals that received cultured tissue allografts. These results promote the feasibility of in vitro maintenance of fetal human and rat nigral tissue prior to transplantation using the free-floating roller tube technique.
Resumo:
A longitudinal bone survey was conducted in 86 female Wistar rats in order to assess mineral density kinetics from young age (5 weeks: 115 g) till late adulthood (64 weeks: 586 g). In vivo quantitative radiographic scanning was performed on the caudal vertebrae, taking trabecular mass as the parameter. Measurements were expressed as Relative Optical Density (ROD) units by means of a high resolution densitometric device. Results showed a progressive increase in mineral density throughout the life cycle, with a tendency to level in the higher weight range, indicating that progressive mineral aposition occurs in rats in dependency of age. This phenomenon, however, should be always considered within the context of continuous skeletal growth and related changes typical of this species. Twelve different animals were also examined following induction of articular inflammation with Freund's adjuvant in six of them. Bone survey conducted 12 to 18 days after inoculation revealed a significant (P less than 0.01) reduction in trabecular bone mass of scanned vertebrae in comparison with the weight-matched untreated controls. It is concluded that the in vivo quantitative assessment of bone density illustrated in this report represents a sensitive and useful tool for the long-term survey of naturally occurring or experimentally induced bone changes. Scanning of the same part of the skeleton can be repeated, thereby avoiding sacrifice of the animal and time-consuming preparation of post-mortem material.
Resumo:
BACKGROUND: Methylphenidate (MPD) is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC). METHODS: The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg) on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39) rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p.) on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10). Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. RESULTS: Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% +/- 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% +/- 5.9% after 2.5 mg/kg MPD, and 56.5% +/- 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of MPD-induced attenuation were also found among these brain areas. CONCLUSION: These results suggest that an acute treatment of MPD produces electrophysiologically detectable alterations at the neuronal level, as well as observable, behavioral responses. The present study is the first to investigate the acute dose-response effects of MPD on behavior in terms of locomotor activity and in the brain involving the sensory inputs of VTA, NAc, and PFC neurons in intact, non-anesthetized, freely behaving rats previously implanted with permanent electrodes.
Resumo:
The countermanding paradigm was designed to investigate the ability to cancel a prepotent response when a stop signal is presented and allows estimation of the stop signal response time (SSRT), an otherwise unobservable behaviour. Humans exhibit adaptive control of behaviour in the countermanding task, proactively lengthening response time (RT) in expectation of stopping and reactively lengthening RT following stop trials or errors. Human performance changes throughout the lifespan, with longer RT, SSRT and greater emphasis on post-error slowing reported for older compared to younger adults. Inhibition in the task has generally been improved by drugs that increase extracellular norepinephrine. The current thesis examined a novel choice response countermanding task in rats to explore whether rodent countermanding performance is a suitable model for the study of adaptive control of behaviour, lifespan changes in behavioural control and the role of neurotransmitters in these behaviours. Rats reactively adjusted RT in the countermanding task, shortening RT after consecutive correct go trials and lengthening RT following non-cancelled, but not cancelled stop trials, in sessions with a 10 s, but not a 1 s post-error timeout interval. Rats proactively lengthened RT in countermanding task sessions compared to go trial-only sessions. Together, these findings suggest that rats strategically lengthened RT in the countermanding task to improve accuracy and avoid longer, unrewarded timeout intervals. Next, rats exhibited longer RT and relatively conserved post-error slowing, but no significant change in SSRT when tested at 12, compared to 7 months of age, suggesting that rats exhibit changes in countermanding task performance with aging similar to those observed in humans. Finally, acute administration of yohimbine (1.25, 2.5 mg/kg) and d-amphetamine (0.25, 0.5 mg/kg), which putatively increase extracellular norepinephrine and dopamine respectively, resulted in RT shortening, baseline-dependent effects on SSRT, and attenuated adaptive RT adjustments in rats in the case of d-amphetamine. These findings suggest that dopamine and norepinephrine encouraged motivated, reward-seeking behaviour and supported inhibitory control in an inverted-U-like fashion. Taken together, these observations validate the rat countermanding task for further study of the neural correlates and neurotransmitters mediating adaptive control of behaviour and lifespan changes in behavioural control.
Resumo:
The neurotransmitter dopamine (DA) plays an essential role in reward-related incentive learning, whereby neutral stimuli gain the ability to elicit approach and other responses. In an incentive learning paradigm called conditioned activity, animals receive a stimulant drug in a specific environment over the course of several days. When then placed in that environment drug-free, they generally display a conditioned hyperactive response. Modulating DA transmission at different time points during the paradigm has been shown to disrupt or enhance conditioning effects. For instance, blocking DA D2 receptors before sessions generally impedes the acquisition of conditioned activity. To date, no studies have examined the role of D2 receptors in the consolidation phase of conditioned activity; this phase occurs immediately after acquisition and involves the stabilization of memories for long-term storage. To investigate this possible role, I trained Wistar rats (N = 108) in the conditioned activity paradigm produced by amphetamine (2.0 mg/kg, intraperitoneally) to examine the effects of the D2 antagonist haloperidol (doses 0.10, 0.25, 0.50, 0.75, 1.0, & 2.0 mg/kg, intraperitoneally) administered 5 min after conditioning sessions. Two positive control groups received haloperidol 1 h before conditioning sessions (doses 1.0 mg/kg and 2.0 mg/kg). The results revealed that post-session haloperidol at all doses tested did not disrupt the consolidation of conditioned activity, while pre-session haloperidol at 2.0 mg/kg prevented acquisition, with the 1.0 mg/kg group trending toward a block. Additionally, post-session haloperidol did not diminish activity during conditioning days, unlike pre-session haloperidol. One possible reason for these findings is that the consolidation phase may have begun earlier than when haloperidol was administered, since the conditioned activity paradigm uses longer learning sessions than those generally used in consolidation studies. Future studies may test if conditioned activity can be achieved with shorter sessions; if so, haloperidol would then be re-tested at an earlier time point. D2 receptor second messenger systems may also be investigated in consolidation. Since drug-related incentive stimuli can evoke cravings in those with drug addiction, a better understanding of the mechanisms of incentive learning may lead to the development of solutions for these individuals.
Resumo:
Purpose: To determine whether the localization of retinal glutamate transporters is affected by retinal ischaemia and whether their ability to transport glutamate decreases with the progression of ischemic retinal and optic nerve degeneration. Methods: Retinal ischemia was induced in rats by acutely increasing the intraocular pressure (IOP, 110 mmHg/60 min). Reperfusion was permitted for periods up to 60 days post-ischemia. Functional evaluation was performed by monitoring the pupil light reflexes (PLRs) and electroretinograms (flash, flicker ERG and oscillatory potentials). Glutamate transporter localization and D-aspartate (glutamate analogue) uptake were assessed by immunohistochemistry. Results: Intense immunoreactivity for the retinal glutamate transporters (GLAST, GLT1, EAAC1 and EAAT5) was observed at all time points after the insult, despite severe retinal degeneration. D-aspartate was also normally accumulated in the ischemic retinas. Ten days post-operatively the PLR ratio (ratio = indirect/direct PLR = 34 +/- 7(.)5%) was significantly less than the pre-operative value (pre-op = 76(.)7 +/- 2 (.)6%, p < 0(.)05). However, 25 and 35 days post-operatively PLR ratios did not differ significantly from pre-operative values (44(.)4 +/- 6(.)9 and 53(.)8 +/- 9(.)6%, p > 0(.)05). Forty-five and 60 days post-operatively the PLR ratio declined again and was significantly lower than the pre-operative value (33(.)8 + 8(.)7 and 26(.)2 + 8(.)9%, p < 0(.)05). Statistical analysis revealed that all tested ERG components had significantly higher values at 32, but not at 42 and 58 days post-operatively when compared to the first time point recorded post-operatively (10 days). Conclusions: While retinal glutamate transport is compromised during an acute ischemic insult, consequent retinal recovery and degeneration are not due to a change in the excitatory amino acid transporter localization or D-aspartate (glutamate analogue) uptake. Rat retina and optic nerve are capable of spontaneous, but temporary, functional recovery after an acute ischemic insult. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Aims: Previous immunohistochemical studies have shown that the post-translational formation of aldehyde-protein adducts may be an important process in the aetiology of alcohol-induced muscle disease. However, other studies have shown that in a variety of tissues, alcohol induces the formation of various other adduct species, including hybrid acetaldehyde-malondialdehyde-protein adducts and adducts with free radicals themselves, e.g. hydroxyethyl radical (HER)-protein adducts. Furthermore, acetaldehyde-protein adducts may be formed in reducing or non-reducing environments resulting in distinct molecular entities, each with unique features of stability and immunogenicity. Some in vitro studies have also suggested that unreduced adducts may be converted to reduced adducts in situ. Our objective was to test the hypothesis that in muscle a variety of different adduct species are formed after acute alcohol exposure and that unreduced adducts predominate. Methods: Rabbit polyclonal antibodies were raised against unreduced and reduced aldehydes and the HER-protein adducts. These were used to assay different adduct species in soleus (type I fibre-predominant) and plantaris (type II fibre-predominant) muscles and liver in four groups of rats administered acutely with either [A] saline (control); [B] cyanamide (an aldehyde dehydrogenase inhibitor); [C] ethanol; [D] cyanamide+ethanol. Results: Amounts of unreduced acetaldehyde and malondialdehyde adducts were increased in both muscles of alcohol-dosed rats. However there was no increase in the amounts of reduced acetaldehyde adducts, as detected by both the rabbit polyclonal antibody and the RT1.1 mouse monoclonal antibody. Furthermore, there was no detectable increase in malondialdehyde-acetaldehyde and HER-protein adducts. Similar results were obtained in the liver. Conclusions: Adducts formed in skeletal muscle and liver of rats exposed acutely to ethanol are mainly unreduced acetaldehyde and malondialdehyde species.
Resumo:
Epidemiological evidence and in vitro data suggest that COX-2 is a key regulator of accelerated remodeling. Accelerated states of osteoblast and osteoclast activity are regulated by prostaglandins in vitro, but experimental evidence for specific roles of cyclooxygenase-2 (COX-2) and secretory phospholipase A(2) (sPLA(2)) in activated states of remodeling in vivo is lacking. The aim of this study was to determine the effect of specific inhibitors of sPLA(2)-IIa and COX-2 on bone remodeling activated by estrogen deficiency in adult female rats. One hundred and twenty-four adult female Wistar rats were ovariectomized (OVX) or sham-operated. Rats commenced treatment 14 days after surgery with either vehicle, a COX-2 inhibitor (DFU at 0.02 mg/kg/day and 2.0 mg/kg/day) or a sPLA(2)-group-IIa inhibitor (KH064 at 0.4 mg/kg/day and 4.0 mg/kg/day). Treatment continued daily until rats were sacrificed at 70 days or 98 days post-OVX. The right tibiae were harvested, fixed and embedded in methylmethacrylate for structural histomorphometric bone analysis at the proximal tibial metaphysis. The specific COX-2 or sPLA(2) inhibitors prevented ovariectomy-induced (OVX-induced) decreases in trabecular connectivity (P < 0.05); suppressed the acceleration of bone resorption; and maintained bone turnover at SHAM levels following OVX in the rat. The sPLA2 inhibitor significantly suppressed increases in osteoclast surface induced by OVX (P < 0.05), while the effect of COX-2 inhibition was less marked. These findings demonstrate that inhibitors of COX-2 and sPLA(2)-IIa can effectively suppress OVX-induced bone loss in the adult rat by conserving trabecular bone mass and architecture through reduced bone remodeling and decreased resorptive activity. Moreover, we report an important role of sPLA(2)-IIa in osteoclastogenesis that may be independent of the COX-2 metabolic pathway in the OVX rat in vivo. (c) 2006 Elsevier Inc. All rights reserved.