989 resultados para POSITIVE-PRESSURE VENTILATION
Resumo:
INTRODUCTION Hemodynamic resuscitation should be aimed at achieving not only adequate cardiac output but also sufficient mean arterial pressure (MAP) to guarantee adequate tissue perfusion pressure. Since the arterial pressure response to volume expansion (VE) depends on arterial tone, knowing whether a patient is preload-dependent provides only a partial solution to the problem. The objective of this study was to assess the ability of a functional evaluation of arterial tone by dynamic arterial elastance (Ea(dyn)), defined as the pulse pressure variation (PPV) to stroke volume variation (SVV) ratio, to predict the hemodynamic response in MAP to fluid administration in hypotensive, preload-dependent patients with acute circulatory failure. METHODS We performed a prospective clinical study in an adult medical/surgical intensive care unit in a tertiary care teaching hospital, including 25 patients with controlled mechanical ventilation who were monitored with the Vigileo(®) monitor, for whom the decision to give fluids was made because of the presence of acute circulatory failure, including arterial hypotension (MAP ≤65 mmHg or systolic arterial pressure <90 mmHg) and preserved preload responsiveness condition, defined as a SVV value ≥10%. RESULTS Before fluid infusion, Ea(dyn) was significantly different between MAP responders (MAP increase ≥15% after VE) and MAP nonresponders. VE-induced increases in MAP were strongly correlated with baseline Ea(dyn) (r(2) = 0.83; P < 0.0001). The only predictor of MAP increase was Ea(dyn) (area under the curve, 0.986 ± 0.02; 95% confidence interval (CI), 0.84-1). A baseline Ea(dyn) value >0.89 predicted a MAP increase after fluid administration with a sensitivity of 93.75% (95% CI, 69.8%-99.8%) and a specificity of 100% (95% CI, 66.4%-100%). CONCLUSIONS Functional assessment of arterial tone by Ea(dyn), measured as the PVV to SVV ratio, predicted arterial pressure response after volume loading in hypotensive, preload-dependent patients under controlled mechanical ventilation.
Resumo:
Résumé: La formation des atélectasies durant l'induction de l'anesthésie générale est plus importante chez le patient obèse morbide. Nous avons démontré dans des travaux de recherche antérieurs que l'utilisation de la PEEP (Pression Positive en Fin d'Expiration) durant l'induction de l'anesthésie prévient la formation d'atélectasies chez des patients non obèses. Par conséquent, nous voulions étudier l'efficacité de la pression positive en fin d'expiration chez le patient obèse morbide dans la prévention de la formation d'atélectasies. Nous avons fait une étude de 23 patients obèses morbides (BMI > 35 kg / m2) dans 2 groupes. Dans le groupe utilisant la pression positive en fin d'expiration, les patients respiraient 100% d'oxygène pendant 5 minutes par l'intermédiaire d'un masque facial type CPAP avec une pression de 10 cm H20. Après l'induction de l'anesthésie, nous avons ventilé les patients au masque facial avec une PEEP de 10 cm H20. Dans le groupe de contrôle, nous avons procédé au même type d'induction sans utiliser la pression positive en fin d'expiration. La surface de poumon atélectatique a été évaluée par tomographie (CT scann). L'étude des échanges gazeux se faisait à 2 reprises, à partir de gazométries réalisées juste avant l'induction de l'anesthésie puis juste après l'intubation. Après l'induction de l'anesthésie et l'intubation, les patients du groupe de contrôle présentaient une quantité d'atélectasies plus importante que les patients du groupe où la PEEP avait été utilisée (10.4% + 4.8% dans le groupe de contrôle versus 1.3% dans le groupe utilisant la pression positive en fin d'expiration p < 0.001). Après l'intubation, en présence d'une fraction inspirée en oxygène à 100%, la Pa02 était significativement supérieure dans le groupe ayant utilisé la pression positive en fin d'expiration en comparaison avec le groupe de contrôle (respectivement 457 ± 130 mmHg versus 315 ± 100 mmHg). Nous avons conclu que chez le patient obèse morbide, le recours à la pression positive en fin d'expiration lors de l'induction de l'anesthésie permet de prévenir largement la formation d'atélectasies et s'accompagne d'une meilleure oxygénation. Abstract: Atelectasis caused by general anesthesia is increased in morbidly obese patients. We have shown that application of positive end-expiratory pressure (PEEP) during the induction of anesthesia prevents atelectasis formation in nonobese patients. We therefore studied the efficacy of PEEP in morbidly obese patients to prevent atelectasis. Twenty-three adult morbidly obese patients (b ody mass index >35 kg/m2) were randomly assigned to one of two groups. In the PEEP group, patients breathed 100% oxygen (5 min) with a continuous positive airway pressure of 10 cm H20 and, after the induction, mechanical ventilation via a face mask with a PEEP of 10 cm H2O. In the control group, the same induction was applied but without continuous positive airway pressure or PEEP. Atelectasis, determined by computed tomography, and blood gas analysis were measured twice: before the induction and directly after intubation. After endotracheal intubation, patients of the control group showed an increase in the amount of atelectasis, which was much larger than in the PEEP group (10.4% -± 4.8% in control group versus 1.7% ± 1.3% in PEEP group; P <0.001). After in.tubation with a fraction of inspired oxygen of 1.0, Pao, was significantly higher in the PEEP group compared with the control group (457 ±- 130 mm Hg versus 315 ± 100 mm Hg, respectively; P = 0.035) We conclude that in morbidly obese patients, atelectasis formation is largely prevented by PEEP applied during the anesthetic induction and is associated with a better oxygenation.
Resumo:
OBJECTIVE: : Identification of children with elevated blood pressure (BP) is difficult because of the multiple sex, age, and height-specific thresholds to define elevated BP. We propose a simple set of absolute height-specific BP thresholds and evaluate their performance to identify children with elevated BP in two different populations. METHODS: : Using the 95th sex, age, and relative-height BP US thresholds to define elevated BP in children (standard criteria), we derived a set of (non sex- and non age-specific) absolute height-specific BP thresholds for 11 height categories by 10 cm increments. Using data from large school-based surveys conducted in Switzerland (N = 5207; 2621 boys, 2586 girls; age range: 10.1-14.9 years) and in the Seychelles (N = 25 759; 13 048 boys, 12 711 girls; age range: 4.4-18.8 years), we evaluated the performance of these height-specific thresholds to identify children with elevated BP. We also derived sex-specific absolute height-specific BP thresholds and compared their performance. RESULTS: : In the Swiss and the Seychelles surveys, the prevalence of elevated BP (standard criteria) was 11.4 and 9.1%, respectively. The height-specific thresholds to identify elevated BP had a sensitivity of 80 and 84%, a specificity of 99 and 99%, a positive predictive value of 92 and 91%, and a negative predictive value of 97 and 98%, respectively. Performance of sex-specific absolute height-specific BP thresholds was similar. CONCLUSION: : A simple table of height-specific BP thresholds allowed identifying children with elevated BP with high sensitivity and excellent specificity.
Resumo:
RESUME : L'application d'une ventilation non-invasive (VNI) à pression positive chez des patients avec une insuffisance respiratoire aiguë hypoxémique non liée à une broncho-pneumopathie chronique obstructive (BPCO), reste controversée malgré les résultats encourageants apparus dans de récentes études. Ce travail de thèse est composé d'une introduction qui comprend un historique de la VNI et une revue de ces applications principales dans l'insuffisance respiratoire aiguë avec, en particulier, une analyse des études cliniques principales concernant son utilisation dans l'exacerbation de la BPCO, dans l'asthme aigu sévère, dans les syndromes restrictifs et dans l'insuffisance respiratoire aiguë hypoxémique. La première partie aborde également les aspects pratiques de l'utilisation de la VNI, avec une description de l'équipement et des techniques utilisées. Ce travail de thèse a ensuite pour but d'analyser dans une étude personnelle l'application d'une VNI à pression positive chez des patients avec une insuffisance respiratoire aiguë hypoxémique non liée à une BPCO. Il s'agit d'une étude prospective et observationnelle, dans laquelle nous avons voulu analyser l'efficacité de la VNI chez un groupe de patients sélectionnés et coopérants, stables du point de vue hémodynamique, présentant un syndrome de détresse respiratoire aiguë (SDRA) primaire (atteinte pulmonaire directe). Les échanges gazeux, le taux d'intubation, la mortalité et la durée de séjour dans l'unité de soins intensifs ont été enregistrés. Dans notre travail, la VNI a été appliquée de manière prospective à 12 patients, stables du point de vue hémodynamique, présentant les critères diagnostiques pour un SDRA primaire (SDRAP) et une indication pour une ventilation mécanique classique. Leur évolution a été comparée avec celle d'un groupe contrôle de 12 patients avec SDRAP. et précédemment traités dans la même unité de soins intensifs, ayant des caractéristiques similaires à l'admission : âge, score SAPS II, rapport Pa02/Fi02 et valeurs de pH . Un échec de la VNI fut observé chez 4 patients (33%), tous bactériémiques et nécessitant une intubation endotrachéale. Un facteur prédictif négatif. Les patients traités avec succès ont présenté un temps cumulatif de ventilation (p=0.001) et une durée de séjour aux soins intensifs (p=0.004) inférieure à ceux du groupe contrôle. Pendant la première période d'observation de la ventilation, l'oxygénation après 60 minutes s'est améliorée de manière plus importante dans le groupe VNI par rapport au groupe contrôle (PaO2/FiO2 : 146 +/- 52 mmHg vs. 109 +/- 34 mmHg ; p=0.05). Le taux de mortalité globale aux soins intensifs ne fut pas différent entre le groupe VNI et le groupe de patients intubés. Le taux de complications graves fut plus élevé chez les patients du groupe contrôle. Nos résultats suggèrent que chez des patients stables et coopérants, avec une pneumonie étendue, sans bactériémie à l'admission et remplissant les critères diagnostiques d'un SDRAp, la VNI représente une alternative valable à l'intubation endotrachéale.
Resumo:
The purpose of this study was to assess the relationship between blood pressure (BP) levels and physical activity (PA) domains accounting for overweight/obesity. Adolescents aged 10 to 17 years old were recruited (n = 1021). International Obesity Task Force (IOTF) criteria were used to define overweight and obesity. High BP was defined using the Center of Disease Control and Prevention criteria. Different domains of PA (school activities, sport out of school, and leisure time PA) were assessed using a validated questionnaire. The prevalence of overweight/obesity was 21.9% for boys and 14.8% for girls. Some 13.4% of boys and 10.2% of girls, respectively, had high blood pressure (HBP). A strong and positive association was found between overweight and HBP. After adjustment for body mass index (BMI), total PA was inversely associated with BP. When all PA domains were entered simultaneously in a regression model, and after adjustment for BMI, only sport out of school was significantly and inversely associated with systolic BP [β: -0.82 (-1.50; -0.13)]. These findings open avenue for the early prevention of HBP by the prevention of obesity and promotion of PA.
Resumo:
Descriptors: cardiovascular patterns, emotion, affective pictures In this study we assessed blood pressure (BP), heart rate (HR), stroke volume (SV), cardiac output (CO), and total peripheral resistance (TPR) in response to 13 picture series in 18 men and 19 women in order to investigate their hemodynamic responses associated with activation of the appetitive and defensive motivational systems underlying emotional experience. Skin conductance level (SCL) was also recorded. BP and SV increased with increasing self-rated arousal both for appetitive and defensive activation, whereas HR decelerated more in response to negative than positive and neutral pictures. TPR showed a general increase from baseline to picture processing but was unrelated to self-rated valence and arousal. These findings suggest that affective modulation of the cardiovascular response to affective pictures is primarily myocardial. The observed response pattern is consistent with a configuration of cardiac sympathetic-parasympathetic coactivation. The relationships between self-reported arousal, BP and SV were mainly exhibited by men suggesting that increases in the sympathetic inotropic effect to the heart with increasing self-rated arousal might be larger in men than in women. In contrast, SCL covaried positively with self-rated arousal both in men and women. This suggests that sex differences in the affective modulation of the responses to pictures may be restricted to specific cardiovascular parameters and support the contention that the sympathetic nervous system does not discharge as a whole.
Resumo:
BACKGROUND: The diagnosis of hypertension in children is difficult because of the multiple sex-, age-, and height-specific thresholds to define elevated blood pressure (BP). Blood pressure-to-height ratio (BPHR) has been proposed to facilitate the identification of elevated BP in children. OBJECTIVE: We assessed the performance of BPHR at a single screening visit to identify children with hypertension that is sustained elevated BP. METHOD: In a school-based study conducted in Switzerland, BP was measured at up to three visits in 5207 children. Children had hypertension if BP was elevated at the three visits. Sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) for the identification of hypertension were assessed for different thresholds of BPHR. The ability of BPHR at a single screening visit to discriminate children with and without hypertension was evaluated with receiver operating characteristic (ROC) curve analyses. RESULTS: The prevalence of systolic/diastolic hypertension was 2.2%. Systolic BPHR had a better performance to identify hypertension compared with diastolic BPHR (area under the ROC curve: 0.95 vs. 0.84). The highest performance was obtained with a systolic BPHR threshold set at 0.80 mmHg/cm (sensitivity: 98%; specificity: 85%; PPV: 12%; and NPV: 100%) and a diastolic BPHR threshold set at 0.45 mmHg/cm (sensitivity: 79%; specificity: 70%; PPV: 5%; and NPV: 99%). The PPV was higher among tall or overweight children. CONCLUSION: BPHR at a single screening visit had a high performance to identify hypertension in children, although the low prevalence of hypertension led to a low PPV.
Resumo:
Blood pressure (BP) is a heritable, quantitative trait with intraindividual variability and susceptibility to measurement error. Genetic studies of BP generally use single-visit measurements and thus cannot remove variability occurring over months or years. We leveraged the idea that averaging BP measured across time would improve phenotypic accuracy and thereby increase statistical power to detect genetic associations. We studied systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP) averaged over multiple years in 46,629 individuals of European ancestry. We identified 39 trait-variant associations across 19 independent loci (p < 5 × 10(-8)); five associations (in four loci) uniquely identified by our LTA analyses included those of SBP and MAP at 2p23 (rs1275988, near KCNK3), DBP at 2q11.2 (rs7599598, in FER1L5), and PP at 6p21 (rs10948071, near CRIP3) and 7p13 (rs2949837, near IGFBP3). Replication analyses conducted in cohorts with single-visit BP data showed positive replication of associations and a nominal association (p < 0.05). We estimated a 20% gain in statistical power with long-term average (LTA) as compared to single-visit BP association studies. Using LTA analysis, we identified genetic loci influencing BP. LTA might be one way of increasing the power of genetic associations for continuous traits in extant samples for other phenotypes that are measured serially over time.
Resumo:
BACKGROUND: Because ambulatory blood pressure monitoring (ABPM) is not available everywhere, the objective of the study was to determine whether nurse-measured blood pressure could be an acceptable substitute to ABPM. METHODS: We analyzed the data of 2385 consecutive patients referred to our hypertension clinic for the performance of ABPM. Before ambulatory monitoring was performed, a nurse-measured BP was obtained three times using a Y-tube connecting the sphygmomanometer and the recorder. We compared the mean value of the three nurse-measured blood pressures with that of the 12h daytime ambulatory monitoring, considered as the reference. RESULTS: The difference between the nurse-measured and the ambulatory blood pressure was small but statistically significant, indicating that nurse-measured blood pressure tends to overestimate both diastolic and systolic blood pressure. The difference between the nurse blood pressure and ABPM was greater among treated hypertensive patients than untreated patients. To diagnose hypertension, defined as a blood pressure of over 140/90mmHg by ABPM, the positive predictive value of the nurse blood pressure was 0.81 and the negative predictive value 0.63. However, these predictive values could be improved with less stringent cut-off values of blood pressure. Thus, for a diastolic blood pressure above 100mmHg, the positive predictive value of nurse blood pressure was 0.55 and the negative predictive value 0.91. These figures were relatively similar for previously treated and untreated patients. CONCLUSION: Nurse blood pressure is less accurate than ABPM in diagnosing hypertension, defined as a blood pressure of over 140/90mmHg. It could, however, be an acceptable substitute, especially to exclude people who do not need to be treated, in situations where lower resources require a less rigorous definition of hypertension.
Resumo:
OBJECTIVE: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, "Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock," published in 2004. DESIGN: Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. METHODS: We used the GRADE system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost), or clearly do not. Weak recommendations indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. RESULTS: Key recommendations, listed by category, include: early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures prior to antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7-10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure > or = 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for post-operative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7-9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B) targeting a blood glucose < 150 mg/dL after initial stabilization ( 2C ); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper GI bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include: greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); a recommendation against the use of recombinant activated protein C in children (1B). CONCLUSION: There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.
Resumo:
INTRODUCTION. Neurally Adjusted Ventilatory Assist (NAVA) [1] is a new spontaneousassisted ventilatory mode which uses the diaphragmatic electrical activity (Eadi) to pilot the ventilator. Eadi is used to initiate the ventilator's pressurization and cycling off. Delivered inspiratory assistance is proportional to Eadi. NAVA can improve patient-ventilator synchrony [2] compared to pressure support (PS), but little is known about its effect on minute ventilation and oxygenation. OBJECTIVES. To compare the effects of NAVA and PS on minute ventilation and oxygenation and to analyze potential determinant factors for oxygenation. METHODS. Comparison between two 20-min periods under NAVA and PS. NAVA gain (proportionality factor between Eadi and delivered pressure) set as to obtain the same peak pressure as in PS. FIO2 and positive end-expiratory pressure (PEEP) were the same in NAVA and PS. Blood gas analyses were performed at the end of both recording periods. Statistical analysis: groups were compared with paired t tests or non parametric Wilcoxon signed-rank tests. p\0.05 was considered significant. RESULTS. [Mean ± SD]: 22 patients (age 66 ± 12 year, 7 M/15F, BMI 23.4 ± 3.1 kg/m2), 8 patients with COPD. Initial settings: PS 13 ± 3 cmH2O, PEEP 7 ± 2 cmH2O, NAVA gain 2.2 ± 1.8. Minute ventilation and PaCO2 were the same with both modes (p = 0.296 and 0.848, respectively). Tidal volume was lower with NAVA (427 ± 102 vs. 477 ± 102 ml, p\0.001). In contrast respiratory rate was higher with NAVA (25.6 ± 9.5 vs. 22.3 ± 8.9 cycles/min). Arterial oxygenation was improved with NAVA (PaO2 85.1 ± 28.9 vs. 75.8 ± 11.9 mmHg, p = 0.017, PaO2/FIO2 210 ± 53 vs. 195 ± 58 mmHg, p = 0.019). Neural inspiratory time (Tin) was comparable between NAVA and PS (p = 0.566). Among potential determinant factors for oxygenation, mean airway pressure (Pmean) was lower with NAVA (10.6 ± 2.6 vs. 11.1 ± 2.4 cmH2O, p = 0.006), as was the pressure time product (PTP) (6.8 ± 3.0 vs. 9.2 ± 3.5 cmH2O 9 s, p = 0.004). There were less asynchrony events with NAVA (2.3 ± 2.0 vs. 4.4 ± 3.8, p = 0.009).Tidal volume variability was higher with NAVA (variation coefficient: 30 ± 19.5 vs. 13.5 ± 8.6, p\0.001). Inspiratory time in excess (Tiex) was lower with NAVA (56 ± 23 vs. 202 ± 200 ms, p = 0.001). CONCLUSION. Despite lower Pmean and PTP in NAVA, arterial oxygenation was improved compared to PS. As asynchronies may be associated with an increased work of breathing and a higher oxygen consumption, their decrease in number with NAVA could be an explanation for oxygenation improvement. Another explanation could be the increase in VT variability. Further studies should now be performed to confirm the potential of NAVA in improving arterial oxygenation and explore the underlying mechanisms.
Resumo:
OBJECTIVE: To assess the suitability of a hot-wire anemometer infant monitoring system (Florian, Acutronic Medical Systems AG, Hirzel, Switzerland) for measuring flow and tidal volume (Vt) proximal to the endotracheal tube during high-frequency oscillatory ventilation. DESIGN: In vitro model study. SETTING: Respiratory research laboratory. SUBJECT: In vitro lung model simulating moderate to severe respiratory distress. INTERVENTION: The lung model was ventilated with a SensorMedics 3100A ventilator. Vt was recorded from the monitor display (Vt-disp) and compared with the gold standard (Vt-adiab), which was calculated using the adiabatic gas equation from pressure changes inside the model. MEASUREMENTS AND MAIN RESULTS: A range of Vt (1-10 mL), frequencies (5-15 Hz), pressure amplitudes (10-90 cm H2O), inspiratory times (30% to 50%), and Fio2 (0.21-1.0) was used. Accuracy was determined by using modified Bland-Altman plots (95% limits of agreement). An exponential decrease in Vt was observed with increasing oscillatory frequency. Mean DeltaVt-disp was 0.6 mL (limits of agreement, -1.0 to 2.1) with a linear frequency dependence. Mean DeltaVt-disp was -0.2 mL (limits of agreement, -0.5 to 0.1) with increasing pressure amplitude and -0.2 mL (limits of agreement, -0.3 to -0.1) with increasing inspiratory time. Humidity and heating did not affect error, whereas increasing Fio2 from 0.21 to 1.0 increased mean error by 6.3% (+/-2.5%). CONCLUSIONS: The Florian infant hot-wire flowmeter and monitoring system provides reliable measurements of Vt at the airway opening during high-frequency oscillatory ventilation when employed at frequencies of 8-13 Hz. The bedside application could improve monitoring of patients receiving high-frequency oscillatory ventilation, favor a better understanding of the physiologic consequences of different high-frequency oscillatory ventilation strategies, and therefore optimize treatment.
Resumo:
An autoregulation-oriented strategy has been proposed to guide neurocritical therapy toward the optimal cerebral perfusion pressure (CPPOPT). The influence of ventilation changes is, however, unclear. We sought to find out whether short-term moderate hypocapnia (HC) shifts the CPPOPT or affects its detection. Thirty patients with traumatic brain injury (TBI), who required sedation and mechanical ventilation, were studied during 20 min of normocapnia (5.1±0.4 kPa) and 30 min of moderate HC (4.4±3.0 kPa). Monitoring included bilateral transcranial Doppler of the middle cerebral arteries (MCA), invasive arterial blood pressure (ABP), and intracranial pressure (ICP). Mx -autoregulatory index provided a measure for the CPP responsiveness of MCA flow velocity. CPPOPT was assessed as the CPP at which autoregulation (Mx) was working with the maximal efficiency. During normocapnia, CPPOPT (left: 80.65±6.18; right: 79.11±5.84 mm Hg) was detectable in 12 of 30 patients. Moderate HC did not shift this CPPOPT but enabled its detection in another 17 patients (CPPOPT left: 83.94±14.82; right: 85.28±14.73 mm Hg). The detection of CPPOPT was achieved via significantly improved Mx-autoregulatory index and an increase of CPP mean. It appeared that short-term moderate HC augmented the detection of an optimum CPP, and may therefore usefully support CPP-guided therapy in patients with TBI.
Resumo:
The evolution of ants is marked by remarkable adaptations that allowed the development of very complex social systems. To identify how ant-specific adaptations are associated with patterns of molecular evolution, we searched for signs of positive selection on amino-acid changes in proteins. We identified 24 functional categories of genes which were enriched for positively selected genes in the ant lineage. We also reanalyzed genome-wide data sets in bees and flies with the same methodology to check whether positive selection was specific to ants or also present in other insects. Notably, genes implicated in immunity were enriched for positively selected genes in the three lineages, ruling out the hypothesis that the evolution of hygienic behaviors in social insects caused a major relaxation of selective pressure on immune genes. Our scan also indicated that genes implicated in neurogenesis and olfaction started to undergo increased positive selection before the evolution of sociality in Hymenoptera. Finally, the comparison between these three lineages allowed us to pinpoint molecular evolution patterns that were specific to the ant lineage. In particular, there was ant-specific recurrent positive selection on genes with mitochondrial functions, suggesting that mitochondrial activity was improved during the evolution of this lineage. This might have been an important step toward the evolution of extreme lifespan that is a hallmark of ants.
Resumo:
In subjects with normal lung mechanics, inspiratory muscle strength can be reliably and easily assessed by the sniff nasal inspiratory pressure (SNIP), which is the pressure measured in an occluded nostril during a maximal sniff performed through the contralateral nostril. The aim of this study was to assess the validity of the SNIP in patients with chronic obstructive pulmonary disease (COPD), where pressure transmission from alveoli to upper airways is likely to be dampened. Twenty eight patients with COPD were studied (mean forced expiratory volume in one second (FEV1) = 36% of predicted). The SNIP and the sniff oesophageal pressure (sniff Poes) were measured simultaneously during maximal sniffs, and were compared to the maximal inspiratory pressure obtained against an occlusion (MIP). All measurements were performed from functional residual capacity in the sitting position. The ratio SNIP/sniff Poes was 0.80, and did not correlate with the degree of airflow limitation. The ratio MIP/sniff Poes was 0.87, and the ratio SNIP/MIP was 0.97. Inspiratory muscle weakness, as defined by a low sniff Poes, was present in 17 of the 28 patients. A false diagnosis of weakness was made in eight patients when MIP was considered alone, in four when SNIP was considered alone, and in only three patients when MIP and SNIP were combined. We conclude that both the sniff nasal inspiratory pressure and the maximal inspiratory pressure moderately underestimate sniff oesophageal pressure in chronic obstructive pulmonary disease. Although suboptimal in this condition, the sniff nasal inspiratory pressure appears useful to complement the maximal inspiratory pressure for assessing inspiratory muscle strength in patients with chronic obstructive pulmonary disease.