805 resultados para POLYMER MICRONEEDLES
Resumo:
We use a combination of microscopy, x-ray scattering and neutron scattering to show how structure develops in micro and nano-size polymer fibres prepared by electrospinning. The technique has been applied to a range of different polymers, an amorphous system (polystyrene), a crystallisable polymer (poly-epsilon-caprolactone), a composite systems (polyethylene oxide or poly vinyl alcohol containing polypyrrole) and consider the possibility of self assembly (gelatin).
Resumo:
The discovery of new molecular targets and the subsequent development of novel anticancer agents are opening new possibilities for drug combination therapy as anticancer treatment. Polymer-drug conjugates are well established for the delivery of a single therapeutic agent, but only in very recent years their use has been extended to the delivery of multi-agent therapy. These early studies revealed the therapeutic potential of this application but raised new challenges (namely, drug loading and drugs ratio, characterisation, and development of suitable carriers) that need to be addressed for a successful optimisation of the system towards clinical applications.
Resumo:
We developed a family of polymer-drug conjugates carrying the combination of the anticancer agent epirubicin (EPI) and nitric oxide (NO). EPI-PEG-(NO)8, carrying the highest content of NO, displayed greater activity in Caco-2 cells while it decreased toxicity against endothelium cells and cardiomyocytes with respect to free EPI. FACS and confocal microscopy confirmed conjugates internalization. Light scattering showed formation of micelle whose size correlated with internalization rate. EPI-PEG-(NO)8 showed increased bioavailability in mice compared to free EPI.
Resumo:
In this work, compliant actuators are developed by coupling braided structures and polymer gels, able to produce work by controlled gel swelling in the presence of water. A number of aspects related to the engineering of gel actuators were studied, including gel selection, modelling and experimentation of constant force and constant displacement behaviour, and response time. The actuator was intended for use as vibration neutralizer: with this aim, generation of a force of 10 N in a time not exceeding a second was needed. Results were promising in terms of force generation, although response time was still longer than required. In addition, the easiest way to obtain the reversibility of the effect is still under discussion: possible routes for improvement are suggested and will be the object of future work.
Resumo:
An elastomeric, supramolecular healable polymer blend, comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl endgroups, is compatibilised by aromatic π−π stacking between the π-electron-deficient diimide groups and the π-electron-rich pyrenyl units. This inter-polymer interaction is key to forming a tough, healable, elastomeric material. Variable temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the π–π stacking interactions. Variable temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology, and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.