644 resultados para POLES
Resumo:
A poor representation of cloud structure in a general circulation model (GCM) is widely recognised as a potential source of error in the radiation budget. Here, we develop a new way of representing both horizontal and vertical cloud structure in a radiation scheme. This combines the ‘Tripleclouds’ parametrization, which introduces inhomogeneity by using two cloudy regions in each layer as opposed to one, each with different water content values, with ‘exponential-random’ overlap, in which clouds in adjacent layers are not overlapped maximally, but according to a vertical decorrelation scale. This paper, Part I of two, aims to parametrize the two effects such that they can be used in a GCM. To achieve this, we first review a number of studies for a globally applicable value of fractional standard deviation of water content for use in Tripleclouds. We obtain a value of 0.75 ± 0.18 from a variety of different types of observations, with no apparent dependence on cloud type or gridbox size. Then, through a second short review, we create a parametrization of decorrelation scale for use in exponential-random overlap, which varies the scale linearly with latitude from 2.9 km at the Equator to 0.4 km at the poles. When applied to radar data, both components are found to have radiative impacts capable of offsetting biases caused by cloud misrepresentation. Part II of this paper implements Tripleclouds and exponential-random overlap into a radiation code and examines both their individual and combined impacts on the global radiation budget using re-analysis data.
Resumo:
We consider a non-local version of the NJL model, based on a separable quark-quark interaction. The interaction is extended to include terms that bind vector and axial-vector mesons. The non-locality means that no further regulator is required. Moreover the model is able to confine the quarks by generating a quark propagator without poles at real energies. Working in the ladder approximation, we calculate amplitudes in Euclidean space and discuss features of their continuation to Minkowski energies. Conserved currents are constructed and we demonstrate their consistency with various Ward identities. Various meson masses are calculated, along with their strong and electromagnetic decay amplitudes. We also calculate the electromagnetic form factor of the pion, as well as form factors associated with the processes γγ* → π0 and ω → π0γ*. The results are found to lead to a satisfactory phenomenology and lend some dynamical support to the idea of vector-meson dominance.
Resumo:
A nonlocal version of the NJL model is investigated. It is based on a separable quark-quark interaction, as suggested by the instanton liquid picture of the QCD vacuum. The interaction is extended to include terms that bind vector and axial-vector mesons. The nonlocality means that no further regulator is required. Moreover the model is able to confine the quarks by generating a quark propagator without poles at real energies. Features of the continuation of amplitudes from Euclidean space to Minkowski energies are discussed. These features lead to restrictions on the model parameters as well as on the range of applicability of the model. Conserved currents are constructed, and their consistency with various Ward identities is demonstrated. In particular, the Gell-Mann-Oakes-Renner relation is derived both in the ladder approximation and at meson loop level. The importance of maintaining chiral symmetry in the calculations is stressed throughout. Calculations with the model are performed to all orders in momentum. Meson masses are determined, along with their strong and electromagnetic decay amplitudes. Also calculated are the electromagnetic form factor of the pion and form factors associated with the processes gamma gamma* --> pi0 and omega --> pi0 gamma*. The results are found to lead to a satisfactory phenomenology and demonstrate a possible dynamical origin for vector-meson dominance. In addition, the results produced at meson loop level validate the use of 1/Nc as an expansion parameter and indicate that a light and broad scalar state is inherent in models of the NJL type.
Resumo:
This paper considers PID control in terms of its implementation by means of an ARMA plant model. Two controller actions are considered, namely pole placement and deadbeat, both being applied via a PID structure for the adaptive real-time control of an industrial level system. As well as looking at two controller types separately, a comparison is made between the forms and it is shown how, under certain circumstances, the two forms can be seen to be identical. It is shown how the pole-placement PID form does not in fact realise an action which is equivalent to the deadbeat controller, when all closed-loop poles are chosen to be at the origin of the z-plane.
Resumo:
A predictability index was defined as the ratio of the variance of the optimal prediction to the variance of the original time series by Granger and Anderson (1976) and Bhansali (1989). A new simplified algorithm for estimating the predictability index is introduced and the new estimator is shown to be a simple and effective tool in applications of predictability ranking and as an aid in the preliminary analysis of time series. The relationship between the predictability index and the position of the poles and lag p of a time series which can be modelled as an AR(p) model are also investigated. The effectiveness of the algorithm is demonstrated using numerical examples including an application to stock prices.
Resumo:
A fixed dynamical heating model is used to investigate the pattern of zonal-mean stratospheric temperature change resulting from geoengineering with aerosols composed of sulfate, titania, limestone and soot. Aerosol always heats the tropical lower stratosphere, but at the poles the response can be either heating, cooling, or neutral. The sign of the change in stratospheric Pole-Equator temperature difference depends on aerosol type, size and season. This has implications for modelling geoengineering impacts and the response of the stratospheric circulation.
Resumo:
Currently, most operational forecasting models use latitude-longitude grids, whose convergence of meridians towards the poles limits parallel scaling. Quasi-uniform grids might avoid this limitation. Thuburn et al, JCP, 2009 and Ringler et al, JCP, 2010 have developed a method for arbitrarily-structured, orthogonal C-grids (TRiSK), which has many of the desirable properties of the C-grid on latitude-longitude grids but which works on a variety of quasi-uniform grids. Here, five quasi-uniform, orthogonal grids of the sphere are investigated using TRiSK to solve the shallow-water equations. We demonstrate some of the advantages and disadvantages of the hexagonal and triangular icosahedra, a Voronoi-ised cubed sphere, a Voronoi-ised skipped latitude-longitude grid and a grid of kites in comparison to a full latitude-longitude grid. We will show that the hexagonal-icosahedron gives the most accurate results (for least computational cost). All of the grids suffer from spurious computational modes; this is especially true of the kite grid, despite it having exactly twice as many velocity degrees of freedom as height degrees of freedom. However, the computational modes are easiest to control on the hexagonal icosahedron since they consist of vorticity oscillations on the dual grid which can be controlled using a diffusive advection scheme for potential vorticity.
Resumo:
Numerical methods are described for determining robust, or well-conditioned, solutions to the problem of pole assignment by state feedback. The solutions obtained are such that the sensitivity of the assigned poles to perturbations in the system and gain matrices is minimized. It is shown that for these solutions, upper bounds on the norm of the feedback matrix and on the transient response are also minimized and a lower bound on the stability margin is maximized. A measure is derived which indicates the optimal conditioning that may be expected for a particular system with a given set of closed-loop poles, and hence the suitability of the given poles for assignment.
Resumo:
The concept of “distance to instability” of a system matrix is generalized to system pencils which arise in descriptor (semistate) systems. Difficulties arise in the case of singular systems, because the pencil can be made unstable by an infinitesimal perturbation. It is necessary to measure the distance subject to restricted, or structured, perturbations. In this paper a suitable measure for the stability radius of a generalized state-space system is defined, and a computable expression for the distance to instability is derived for regular pencils of index less than or equal to one. For systems which are strongly controllable it is shown that this measure is related to the sensitivity of the poles of the system over all feedback matrices assigning the poles.
Resumo:
The problem of robust pole assignment by feedback in a linear, multivariable, time-invariant system which is subject to structured perturbations is investigated. A measure of robustness, or sensitivity, of the poles to a given class of perturbations is derived, and a reliable and efficient computational algorithm is presented for constructing a feedback which assigns the prescribed poles and optimizes the robustness measure.
Resumo:
Some points of the paper by N.K. Nichols (see ibid., vol.AC-31, p.643-5, 1986), concerning the robust pole assignment of linear multiinput systems, are clarified. It is stressed that the minimization of the condition number of the closed-loop eigenvector matrix does not necessarily lead to robustness of the pole assignment. It is shown why the computational method, which Nichols claims is robust, is in fact numerically unstable with respect to the determination of the gain matrix. In replying, Nichols presents arguments to support the choice of the conditioning of the closed-loop poles as a measure of robustness and to show that the methods of J Kautsky, N. K. Nichols and P. VanDooren (1985) are stable in the sense that they produce accurate solutions to well-conditioned problems.
Resumo:
The robustness of state feedback solutions to the problem of partial pole placement obtained by a new projection procedure is examined. The projection procedure gives a reduced-order pole assignment problem. It is shown that the sensitivities of the assigned poles in the complete closed-loop system are bounded in terms of the sensitivities of the assigned reduced-order poles, and the sensitivities of the unaltered poles are bounded in terms of the sensitivities of the corresponding open-loop poles. If the assigned poles are well-separated from the unaltered poles, these bounds are expected to be tight. The projection procedure is described in [3], and techniques for finding robust (or insensitive) solutions to the reduced-order problem are given in [1], [2].
Resumo:
Coordinate free conditions are given for pole assignment by feedback in linear descriptor (singular) systems which guarantee closed-loop regularity. These conditions are shown to be both necessary and sufficient for assignment of the maximum possible number of finite poles. Transformation to special coordinates are not used and the results provide a robust algorithm for the computation of the required feedback.
Resumo:
A number of computationally reliable direct methods for pole assignment by feedback have recently been developed. These direct procedures do not necessarily produce robust solutions to the problem, however, in the sense that the assigned poles are insensitive to perturbalions in the closed-loop system. This difficulty is illustrated here with results from a recent algorithm presented in this TRANSACTIONS and its causes are examined. A measure of robustness is described, and techniques for testing and improving robustness are indicated.
Resumo:
We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two variables. We use the method introduced by one of the authors, which provides a substantial generalization of the inverse scattering transform and can be used for the analysis of boundary as opposed to initial-value problems. We first express the solution in terms of a 2 by 2 matrix Riemann-Hilbert problem whose \jump matrix" depends on both the Dirichlet and the Neumann boundary values. For a well posed problem one of these boundary values is an unknown function. This unknown function is characterised in terms of the so-called global relation, but in general this characterisation is nonlinear. We then concentrate on the case that the prescribed boundary conditions are zero along the unbounded sides of a semistrip and constant along the bounded side. This corresponds to a case of the so-called linearisable boundary conditions, however a major difficulty for this problem is the existence of non-integrable singularities of the function q_y at the two corners of the semistrip; these singularities are generated by the discontinuities of the boundary condition at these corners. Motivated by the recent solution of the analogous problem for the modified Helmholtz equation, we introduce an appropriate regularisation which overcomes this difficulty. Furthermore, by mapping the basic Riemann-Hilbert problem to an equivalent modified Riemann-Hilbert problem, we show that the solution can be expressed in terms of a 2 by 2 matrix Riemann-Hilbert problem whose jump matrix depends explicitly on the width of the semistrip L, on the constant value d of the solution along the bounded side, and on the residues at the given poles of a certain spectral function denoted by h. The determination of the function h remains open.