938 resultados para PITUITARY ADENOMA
Resumo:
Provision of additional floor heating (33 to 34 degrees C) at birth and during the early postnatal hours is favorable for newborn piglets of domestic sows (Sus scrofa). We investigated whether this relatively high temperature influenced sow behavior and physiology around farrowing. One-half of 28 second-parity pregnant sows were randomly chosen to be exposed to floor heating 12 h after onset of nest building and until 48 h after birth of the first piglet (heat treatment), whereas the rest of the sows entered the control group (control treatment) with no floor heating. Hourly blood sampling from 8 h before and until 24 h after the birth of the first piglet was used for investigation of temporal changes in plasma concentrations of oxytocin, cortisol, and ACTH. In addition, occurrence and duration of sow postures were recorded -8 to +48 h relative to the birth of the first piglet. There was a clear temporal development in sow behavior and hormone concentrations (ACTH, cortisol, and oxytocin) across parturition (P < 0.001), independent of treatment. In general, hormone concentrations increased from the start to the end of farrowing. The observed oxytocin increase and peak late in farrowing coincided with the passive phase where sows lie laterally with an overall reduced activity. Floor heating increased the mean concentration of cortisol (P = 0.02; estimated as 29% greater than in controls) and tended to increase the mean concentration of ACTH (P = 0.08; estimated as 17% greater than in controls), but we did not find any treatment effect on mean oxytocin concentrations, the course of parturition, or the behavior of sows. Behavioral thermoregulation may, however, have lost some function for the sows because the floor was fully heated in our study. In addition, exposure to heat decreased the between-sow variation of plasma oxytocin (approximately 31% less relative to control) and ACTH (approximately 46% less relative to control). Whether this decreased variation may be indicative of acute stress or linked to other biological events is unclear. In conclusion, inescapable floor heating (around 33.5 degrees C) may be considered a stressor for sows around farrowing, giving rise to elevated plasma concentrations of cortisol, but without concurrent changes in oxytocin or behavioral activity.
Resumo:
BACKGROUND Optimal surgery for pleomorphic adenoma of the parotid is controversial. In the present review, we discuss the advantages and disadvantages of the various approaches after addressing the surgical pathology of the parotid pleomorphic adenoma capsule and its influence on surgery. DATA SOURCES PubMed literature searches were performed to identify original studies. CONCLUSIONS Almost all pleomorphic adenomas can be effectively treated by formal parotidectomy, but the procedure is not mandatory. Extracapsular dissection is a minimal margin surgery; therefore, in the hands of a novice or occasional parotid surgeon, it may result in higher rates of recurrence. Partial superficial parotidectomy may be a good compromise. The tumor is removed with a greater cuff of healthy parotid tissue than in extracapsular dissection. This may minimize the recurrence rate. On the other hand, the removal of healthy parotid tissue compared with formal parotidectomy is limited, thus minimizing complications such as facial nerve dysfunction and Frey syndrome.
Resumo:
As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). Although pit-1 was 1 of the first factors identified as a cause of CPHD in mice, many other homeodomain and transcription factors have been characterized as being involved in different developmental stages of pituitary gland development, such as prophet of pit-1 (prop-1), P-Lim, ETS-1, and Brn 4. The aims of the present study were first to screen families and patients suffering from different forms of CPHD for PROP1 gene alterations, and second to define possible hot spots and the frequency of the different gene alterations found. Of 73 subjects (36 families) analyzed, we found 35 patients, belonging to 18 unrelated families, with CPHD caused by a PROP1 gene defect. The PROP1 gene alterations included 3 missense mutations, 2 frameshift mutations, and 1 splice site mutation. The 2 reported frameshift mutations could be caused by any 2-bp GA or AG deletion at either the 148-GGA-GGG-153 or 295-CGA-GAG-AGT-303 position. As any combination of a GA or AG deletion yields the same sequencing data, the frameshift mutations were called 149delGA and 296delGA, respectively. All but 1 mutation were located in the PROP1 gene encoding the homeodomain. Importantly, 3 tandem repeats of the dinucleotides GA at location 296-302 in the PROP1 gene represent a hot spot for CPHD. In conclusion, the PROP1 gene seems to be a major candidate gene for CPHD; however, further studies are needed to evaluate other genetic defects involved in pituitary development.
Resumo:
As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). A mutation in a novel, tissue-specific, paired-like homeodomain transcription factor, termed Prophet of Pit-1 (PROP1), has been identified as causing the Ames dwarf (df) mouse phenotype, and thereafter, different PROP1 gene alterations have been found in humans with CPHD. We report on the follow-up of two consanguineous families (n = 12), with five subjects affected with CPHD (three males and two females) caused by the same nucleotide C to T transition, resulting in the substitution of Arg-->Cys in PROP1 at codon 120. Importantly, there is a variability of phenotype, even among patients with the same mutation. The age at diagnosis was dependent on the severity of symptoms, ranging from 9 months to 8 yr. Although in one patient TSH deficiency was the first symptom of the disorder, all patients became symptomatic by exhibiting severe growth retardation and failure to thrive, which was mainly caused by GH deficiency (n = 4). The secretion of the pituitary-derived hormones (GH, PRL, TSH, LH, and FSH) declined gradually with age, following a different pattern in each individual; therefore, the deficiencies developed over a variable period of time. All of the subjects entered puberty spontaneously, and the two females also experienced menarche and periods before a replacement therapy was necessary.
Resumo:
Despite much attention, the function of oligosaccharide chains of glycoproteins remains largely unknown. Our understanding of oligosaccharide function in vivo has been limited to the use of reagents and targeted mutations that eliminate entire oligosaccharide chains. However, most, if not all biological functions for oligosaccharides have been attributed to specific terminal sequences on these oligosaccharides, yet there have been few studies to examine the consequences of modifying terminal oligosaccharide structures in vivo. To address this issue, mice were created bearing a targeted mutation in $\beta$1,4-galactosyltransferase, an enzyme responsible for elaboration of many of the proposed biologically-active carbohydrate epitopes. Most galactosyltransferase-null mice died within the first few weeks after birth and were characterized by stunted growth, thin skin, sparse hair, and dehydration. In addition, the adrenal cortices were poorly stratified and spermatogenesis was delayed. The few surviving adults had puffy skin (myxedema), difficulty delivering pups at birth (dystocia), and failed to lactate (agalactosis). All of these defects are consistant with endocrine insufficiency, which was confirmed by markedly decreased levels of serum thyroxine. The anterior pituitary gland appeared functionally delayed in newborn mutant mice, since the constituent cells were quiescent and nonsecretory, unlike that of control littermates. However, the anterior pituitary acquired a normal secretory phenotype during neonatal development, although it remained abnormally small and its glycoprotein hormones were devoid of $\beta$1,4-galactosyl residues. These results support in vitro studies suggesting that incomplete glycosylation of pituitary hormones leads to the creation of hormone antagonists that down regulate subsequent endocrine function producing polyglandular endocrine insufficiency. More surprisingly, the fact that some mice survive this neonatal period indicates the presence of a previously unrecognized compensatory pathway for glycoprotein hormone glycosylation and/or action.^ In addition to its well-studied biosynthetic function in the Golgi complex, a GalTase isoform is also expressed on the sperm surface where it functions as a gamete receptor during fertilization by binding to its oligosaccharide ligand on the egg coat glycoprotein, ZP3. Aggregation of GalTase by multivalent ZP3 oligosaccharides activates a G-protein cascade leading to the acrosome reaction. Although GalTase-null males are fertile, the mutant sperm bind less ZP3 than wild-type sperm, and are unable to undergo the acrosome reaction in response to either zona pellucida glycoproteins or to anti-GalTase anti-serum, as do wild-type sperm. However, mutant and wild-type sperm undergo the acrosome reaction normally in response to calcium ionophore which bypasses the requirement for ZP3 binding. Interestingly, the phenotype of the GalTase-null sperm is reciprocal to that of sperm that overexpress surface GalTAse and which bind more ZP3 leading to precocious acrosome reactions. These results confirm that GalTase functions as at least one of the sperm receptors for ZP3, and that GalTase participates in the ZP3-induced signal transduction pathway during zona pellucida-induced acrosome reactions. ^
Resumo:
Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.
Resumo:
BACKGROUND Aggregation of growth hormone (GH) required for its proper storage in granules is facilitated by zinc (Zn(2+)) transported by specific zinc transporters in and out of the regulated secretory pathway. Slc30a5 (ZnT5) was reported to have the highest gene expression among all zinc transporters in primary mouse pituitary cells while ZnT5-null mice presented with abnormal bone development and impaired growth compared to wild-type counterparts. METHODS In vitro studies performed in GH3 cells, a rat pituitary cell line that endogenously produces rat GH (rGH), included analysis of: cytoplasmic Zn(2+) pool changes after altering rSlc30a5 expression (luciferase assay), rZnT5 association with different compartments of the regulated secretory pathway (confocal microscopy), and the rGH secretion after rSlc30a5 knock-down (Western blot). RESULTS Confocal microscopy demonstrated high co-localization of rZnT5 with ER and Golgi (early secretory pathway) while siRNA-mediated knock-down of rSlc30a5 gene expression led to a significant reduction in rGH secretion. Furthermore, altered expression of rSlc30a5 (knock-down/overexpression) evoked changes in the cytoplasmic Zn(2+) pool indicating its important role in mediating Zn(2+) influx into intracellular compartments of the regulated secretory pathway. CONCLUSION Taken together, these results suggest that ZnT5 might play an important role in regulated GH secretion that is much greater than previously anticipated.
Resumo:
Pituitary surgery remains mainly performed trough a transnasal, transseptal and transsphenoidal way. This surgical approach can damage intranasal structures and, in particular, may impede olfactory function. Our study investigates olfactory function in 67 patients undergoing this type of surgery before and 3 months after surgery. Mean olfactory scores were identical pre- and postoperatively. However, on an individual bases seven percent of the patients showed a clear decrease in olfactory function. In conclusion, transnasal, transseptal and transsphenoidal surgery is relativelv safe with regards to olfactory function
Resumo:
The objective of this review study was to encompass the relevant literature and current best practice options for this challenging, sometimes incurable problem. The source of the data was Ovid MEDLINE from 1946 to 2014. Review methods consisted of articles with clinical correlates. The most important cause of recurrence is enucleation with rupture and incomplete tumor excision at operation. Incomplete pseudocapsule, extracapsular extension, pseudopods of pleomorphic adenoma tissue, and satellite pleomorphic beyond the pseudocapsule are also likely linked to recurrent pleomorphic adenoma. Most recurrent pleomorphic adenoma are multinodular. Magnetic resonance imaging is the imaging study of choice for recurrent pleomorphic adenoma. Nerve integrity monitoring may reduce morbidity for recurrent pleomorphic adenoma. Treatment of recurrent pleomorphic adenoma must be individualized. Total parotidectomy, given the multicentricity of recurrent pleomorphic adenoma, is appropriate in many patients, but may be inadequate to control recurrent pleomorphic. There is accumulating evidence from retrospective series that postoperative radiation therapy results in significantly better local control. LEVEL OF EVIDENCE NA Laryngoscope, 2014.
Resumo:
Magnetic Resonance Imaging of the Pituitary Gland of Horses With Pituitary Pars Intermedia Dysfunction
Resumo:
The pineal gland is known to be light sensitive and to be involved in the seasonal reproduction of male golden hamster Mesocricetus auratus. In general, the pineal gland has been demonstrated to be inhibitory to the reproductive system of the male golden hamster. Melatonin is a pineal hormone which can mimic the action of the pineal gland upon the reproductive system. However, the actual site(s) of melatonin action in the hamster has not been demonstrated. In this study a direct effect of melatonin on the release of FSH and LH from superfused hamster pituitary glands was investigated.^ The superfused pituitary glands showed a stable in vitro basal release of FSH and LH for up to 10 hours. The superfused pituitaries demonstrated reproducible responses to repeated pulses of 10('-8) M LHRH, and a dose-dependent response to stimulation with different concentrations of LHRH.^ Melatonin inhibited the basal release of FSH and LH from superfused hamster pituitary glands. This effect of melatonin was specific and not a general indolamine or catecholamine effect.^ The superfused pituitaries had a diurnal differential responsiveness to physiological concentrations of melatonin with respect to FSH and LH release which were related to the light cycle used to maintain the experimental animals. A LD 14:10 photoperiod cycle was used with light on from 5 a.m. till 7 p.m.. With pituitary glands obtained at 8:30 a.m., the basal release of FSH exhibited an initial inhibition, a gradual rebound at approximately two hours after the beginning of melatonin superfusion, and a significant overshoot of FSH release after the cessation of infusion with melatonin (Morning Response). If the pituitary glands were obtained from hamsters which were sacrificed at 3:30 p.m., the release rate of FSH exhibited an inhibition during the entire period of melatonin infusion with a rebound effect appearing only after melatonin infusion was discontinued (Afternoon Response). There was no significant difference in the responsiveness of the pituitary gland to infusion with melatonin at either 8:30 a.m. or 3:30 p.m. with respect to LH release. Also, melatonin could not inhibit the gonadotropins response to continuous superfusion with 10('-9) M LHRH in pituitaries obtained at either 8:30 a.m. or 3:30 p.m., nor inhibit the stimulatory effect of pulsatile 10('-9) M LHRH. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI^