981 resultados para PHYSIOLOGICAL EQUIVALENT TEMPERATURE
Resumo:
In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.
Resumo:
Marine calcareous sediments provide a fundamental basis for palaeoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone, and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium (DSr) was positively correlated with both carbon dioxide (pCO2) and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. Our results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite and challenge interpretations of the coccolith Sr / Ca ratio from high-pCO2 environments (e.g. Palaeocene-Eocene thermal maximum). The partition coefficient of magnesium (DMg) displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith DMg and temperature was observed but pCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production, suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These and previous findings indicate that Mg is transported into the cell and to the site of calcification via different pathways than Ca and Sr. Consequently, the coccolith Mg / Ca ratio should be decoupled from the seawater Mg / Ca ratio. This study gives an extended insight into the driving factors influencing the coccolith Mg / Ca ratio and should be considered for future palaeoproxy calibrations.
Resumo:
Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for 8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.
Resumo:
Acidification of the World's oceans may directly impact reproduction, performance and shell formation of marine calcifying organisms. In addition, since shell production is costly and stress in general draws on an organism's energy budget, shell growth and stability of bivalves should indirectly be affected by environmental stress. The aim of this study was to investigate whether a combination of warming and acidification leads to increased physiological stress (lipofuscin accumulation and mortality) and affects the performance [shell growth, shell breaking force, condition index (Ci)] of young Mytilus edulis and Arctica islandica from the Baltic Sea. We cultured the bivalves in a fully-crossed 2-factorial experimental setup (seawater (sw) pCO2 levels "low", "medium" and "high" for both species, temperature levels 7.5, 10, 16, 20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica) for 13 weeks in summer. Mytilus edulis and A. islandica appeared to tolerate wide ranges of sw temperature and pCO2. Lipofuscin accumulation of M. edulis increased with temperature while the Ci decreased, but shell growth of the mussels only sharply decreased while its mortality increased between 20 and 25 °C. In A. islandica, lipofuscin accumulation increased with temperature, whereas the Ci, shell growth and shell breaking force decreased. The pCO2 treatment had only marginal effects on the measured parameters of both bivalve species. Shell growth of both bivalve species was not impaired by under-saturation of the sea water with respect to aragonite and calcite. Furthermore, independently of water temperatures shell breaking force of both species and shell growth of A. islandica remained unaffected by the applied elevated sw pCO2 for several months. Only at the highest temperature (25 °C), growth arrest of M. edulis was recorded at the high sw pCO2 treatment and the Ci of M. edulis was slightly higher at the medium sw pCO2 treatment than at the low and high sw pCO2 treatments. The only effect of elevated sw pCO2 on A. islandica was an increase in lipofuscin accumulation at the high sw pCO2 treatment compared to the medium sw pCO2 treatment. Our results show that, despite this robustness, growth of both M. edulis and A. islandica can be reduced if sw temperatures remain high for several weeks in summer. As large body size constitutes an escape from crab and sea star predation, this can make bivalves presumably more vulnerable to predation with possible negative consequences on population growth. In M. edulis, but not in A. islandica, this effect is amplified by elevated sw pCO2. We follow that combined effects of elevated sw pCO2 and ocean warming might cause shifts in future Western Baltic Sea community structures and ecosystem services; however, only if predators or other interacting species do not suffer as strong from these stressors.
Resumo:
Carbon uptake and partitioning of two globally abundant diatom species, Thalassiosira weissflogii and Dactyliosolen fragilissimus, was investigated in batch culture experiments under four conditions: ambient (15°C, 400 µatm), high CO2 (15°C, 1000 µatm), high temperature (20°C, 400 µatm), and combined (20°C, 1000 µatm). The experiments were run from exponential growth into the stationary phase (six days after nitrogen depletion), allowing us to track biogeochemical dynamics analogous to bloom situations in the ocean. Elevated CO2 had a fertilizing effect and enhanced uptake of dissolved inorganic carbon (DIC) by about 8% for T. weissflogii and by up to 39% for D. fragilissimus. This was also reflected in higher cell numbers, build-up of particulate and dissolved organic matter, and transparent exopolymer particles. The CO2 effects were most prominent in the stationary phase when nitrogen was depleted and CO2(aq) concentrations were low. This indicates that diatoms in the high CO2 treatments could take up more DIC until CO2 concentrations in seawater became so low that carbon limitation occurs. These results suggest that, contrary to common assumptions, diatoms could be highly sensitive to ongoing changes in oceanic carbonate chemistry, particularly under nutrient limitation. Warming from 15 to 20 °C had a stimulating effect on one species but acted as a stressor on the other species, highlighting the importance of species-specific physiological optima and temperature ranges in the response to ocean warming. Overall, these sensitivities to CO2 and temperature could have profound impacts on diatoms blooms and the biological pump.
Resumo:
Reproduction in many organisms can be disrupted by changes to the physical environment, such as those predicted to occur during climate change. Marine organisms face the dual climate change threats of increasing temperature and ocean acidification, yet no studies have examined the potential interactive effects of these stressors on reproduction in marine fishes. We used a long-term experiment to test the interactive effects of increased temperature and CO2 on the reproductive performance of the anemonefish, Amphiprion melanopus. Adult breeding pairs were kept for 10 months at three temperatures, 28.5°C (+0.0°C), 30.0°C (+1.5°C) and 31.5°C (+3.0°C), cross-factored with 3 CO2 levels, a current day control (417 µatm) and moderate (644 µatm) and high (1134 µatm) treatments consistent with the range of CO2 projections for the year 2100 under RCP8.5. We recorded each egg clutch produced during the breeding season, the number of eggs laid per clutch, average egg size, fertilization success, survival to hatching, hatchling length and yolk provisioning. Adult body condition, hepatosomatic index, gonadosomatic index, and plasma 17beta-estradiol concentrations were measured at the end of the breeding season to determine the effect of prolonged exposure to increased temperature and elevated CO2 on adults, and to examine potential physiological mechanisms for changes in reproduction. Temperature had by far the stronger influence on reproduction, with clear declines in reproduction occurring in the +1.5°C treatment and ceasing altogether in the +3.0°C treatment. In contrast, CO2 had a minimal effect on the majority of reproductive traits measured, but caused a decline in offspring quality in combination with elevated temperature. We detected no significant effect of temperature or CO2 on adult body condition or hepatosomatic index. Elevated temperature had a significant negative effect on plasma 17beta-estradiol concentrations, suggesting that declines in reproduction with increasing temperature were due to the thermal sensitivity of reproductive hormones rather than a reduction in energy available for reproduction. Our results show that elevated temperature exerts a stronger influence than high CO2 on reproduction in A. melanopus. Understanding how these two environmental variables interact to affect the reproductive performance of marine organisms will be important for predicting the future impacts of climate change.
Resumo:
Organisms inhabiting coastal waters naturally experience diel and seasonal physico-chemical variations. According to various assumptions, coastal species are either considered to be highly tolerant to environmental changes or, conversely, living at the thresholds of their physiological performance. Therefore, these species are either more resistant or more sensitive, respectively, to ocean acidification and warming. Here, we focused on Crepidula fornicata, an invasive gastropod that colonized bays and estuaries on northwestern European coasts during the 20th century. Small (<3 cm in length) and large (>4.5 cm in length), sexually mature individuals of C. fornicata were raised for 6 months in three different pCO2 conditions (390 µatm, 750 µatm, and 1400 µatm) at four successive temperature levels (10°C, 13°C, 16°C, and 19°C). At each temperature level and in each pCO2 condition, we assessed the physiological rates of respiration, ammonia excretion, filtration and calcification on small and large individuals. Results show that, in general, temperature positively influenced respiration, excretion and filtration rates in both small and large individuals. Conversely, increasing pCO2 negatively affected calcification rates, leading to net dissolution in the most drastic pCO2 condition (1400 µatm) but did not affect the other physiological rates. Overall, our results indicate that C. fornicata can tolerate ocean acidification, particularly in the intermediate pCO2 scenario. Moreover, in this eurythermal species, moderate warming may play a buffering role in the future responses of organisms to ocean acidification.
Resumo:
The effects of elevated CO2 and temperature on photosynthesis and calcification of two important calcifying reef algae (Halimeda macroloba and Halimeda cylindracea) were investigated with O2 microsensors and chlorophyll a fluorometry through a combination of two pCO2 (400 and 1,200 µatm) and two temperature treatments (28 and 32 °C) equivalent to the present and predicted conditions during the 2100 austral summer. Combined exposure to pCO2 and elevated temperature impaired calcification and photosynthesis in the two Halimeda species due to changes in the microenvironment around the algal segments and a reduction in physiological performance. There were no significant changes in controls over the 5-week experiment, but there was a 50-70 % decrease in photochemical efficiency (maximum quantum yield), a 70-80 % decrease in O2 production and a threefold reduction in calcification rate in the elevated CO2 and high temperature treatment. Calcification in these species is closely coupled with photosynthesis, such that a decrease in photosynthetic efficiency leads to a decrease in calcification. Although pH seems to be the main factor affecting Halimeda species, heat stress also has an impact on their photosystem II photochemical efficiency. There was a strong combined effect of elevated CO2 and temperature in both species, where exposure to elevated CO2 or temperature alone decreased photosynthesis and calcification, but exposure to both elevated CO2 and temperature caused a greater decline in photosynthesis and calcification than in each stress individually. Our study shows that ocean acidification and ocean warming are drivers of calcification and photosynthesis inhibition in Halimeda. Predicted climate change scenarios for 2100 would therefore severely affect the fitness of Halimeda, which can result in a strongly reduced production of carbonate sediments on coral reefs under such changed climate conditions.
Resumo:
Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2 gradient ranging from ~0.5-250 µmol/kg (i.e. ~20-6000 µatm pCO2) at three different temperatures (i.e. 10, 15, 20°C for E. huxleyi and 15, 20, 25°C for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain's temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean.
Resumo:
This study evaluated the impact of medium-term exposure to elevated pCO2 levels (750-1200 ppm) on the physiological processes of juvenile Mytilus chilensis mussels over a period of 70 d in a mesocosm system. Three equilibration tanks filled with filtered seawater were adjusted to three pCO2 levels: 380 (control), 750 and 1200 ppm by bubbling air or an air-CO2 mixture through the water. For the control, atmospheric air (with aprox. 380 ppm CO2) was bubbled into the tank; for the 750 and 1200 ppm treatments, dry air and pure CO2 were blended to each target concentration using mass flow controllers for air and CO2. No impact on feeding activity was observed at the beginning of the experiment, but a significant reduction in clearance rate was observed after 35 d of exposure to highly acidified seawater. Absorption rate and absorption efficiency were reduced at high pCO2 levels. In addition, oxygen uptake fell significantly under these conditions, indicating a metabolic depression. These physiological responses of the mussels resulted in a significant reduction of energy available for growth (scope for growth) with important consequences for the aquaculture of this species during medium-term exposure to acid conditions. The results of this study clearly indicate that high pCO2 levels in the seawater have a negative effect on the health of M. chilensis. Therefore, the predicted acidification of seawater associated with global climate change could be harmful to this ecologically and commercially important mussel.
Resumo:
The combined effects of different light and aqueous CO2 conditions were assessed for the Southern Ocean diatom Proboscia alata(Brightwell) Sundström in laboratory experiments. Selected culture conditions (light and CO2(aq)) were representative for the natural ranges in the modern Southern Ocean. Light conditions were 40 (low) and 240 (high) µmol photons/m**2/s. The three CO2(aq) conditions ranged from 8 to 34 µmol/kg CO2(aq) (equivalent to a pCO2 from 137 to 598 µatm, respectively). Clear morphological changes were induced by these different CO2(aq) conditions. Cells in low [CO2(aq)] formed spirals, while many cells in high [CO2(aq)] disintegrated. Cell size and volume were significantly affected by the different CO2(aq) concentrations. Increasing CO2(aq) concentrations led to an increase in particulate organic carbon concentrations per cell in the high light cultures, with exactly the opposite happening in the low light cultures. However, other parameters measured were not influenced by the range of CO2(aq) treatments. This included growth rates, chlorophyll aconcentration and photosynthetic yield (FV/FM). Different light treatments had a large effect on nutrient uptake. High light conditions caused an increased nutrient uptake rate compared to cells grown in low light conditions. Light and CO2 conditions co-determined in various ways the response of P. alata to changing environmental conditions. Overall P. alata appeared to be well adapted to the natural variability in light availability and CO2(aq) concentration of the modern Southern Ocean. Nevertheless, our results showed that P. alata is susceptible to future changes in inorganic carbon concentrations in the Southern Ocean.
Resumo:
Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.
Resumo:
The microstructural evolution of an AZ31 rolled sheet during dynamic deformation at strain rates of ∼103 s−1 has been investigated by electron backscatter diffraction, X-ray and neutron diffraction. The influence of orientation on the predominant deformation mechanisms and on the recovery processes taking place during deformation has been systematically examined. The results have been compared with those corresponding to the same alloy tested quasi-statically under equivalent conditions. It has been found that strain rate enhances the activation of extension twinning dramatically, while contraction and secondary twinning are not significantly influenced. The polarity of extension twinning is even reversed in some grains under selected testing conditions. Significant grain subdivision by the formation of geometrically necessary boundaries (GNBs) takes place during both quasi-static and dynamic deformation of this AZ31 alloy. It is remarkable that GNBs of high misorientations form even at the highest strain rates. The phenomenon of recovery has been found to be orientation dependent
Resumo:
Models may be useful tools to design efficient crop management practices provided they are able to accurately simulate the effect of weather variables on crop performance. The objective of this work was to accurately simulate the effects of temperature and day length on the rate of vegetative node expression, time to flowering, time to first pod, and time to physiological maturity of faba bean (Vicia faba L.) using the CROPGRO-Fababean model. Field experiments with multiple sowing dates were conducted in northwest Spain during 3 yr (17 sowing dates: 12 used for calibration and five for validation). Observed daily minimum and maximum air temperatures were within the range of ?9.0 and 39.2°C and observed photoperiods within 10.1 to 16.6 h. Optimization of thermal models to predict leaf appearance raised the base temperature (Tb) from the commonly used value of 0.0 to 3.9°C. In addition, photothermal models detected a small accelerating effect of day length on the rate of leaf appearance. Accurate prediction of the flowering date required incorporating day length, but the solved Tb approached negative values, close to ?4°C. All the reproductive phases after flowering were affected only by temperature, but postanthesis Tb was also mayor que0°C and approached values close to 8°C for time to first pod set and 5.5°C for time from first pod to physiological maturity. Our data indicated that cardinal base temperatures are not the same across all phenological phases.
Resumo:
The mycelial growth of 18 Fusarium solani strains isolated from sea beds of the south-eastern coast of Spain was tested on potato-dextrose agar adjusted to different osmotic potentials with either KCl or NACl (-1.50 to -144.54 bars) in 10ºC intervals ranging from 15 to 35ºC. Fungal growth was determined by measuring colony diameter after 4 days incubation. Mycelial growth was maximal at 25ºC. The quantity and frequency pattern of mycelial growth of F. solani differ significantly at 15 and 25ºC, with maximal occurring at the highest water potential tested (-1.50 bars); and at 35ºC, with a maximal mycelial growth at -13.79 bars. The effect of water potential was independent of salt composition. The general growth pattern of F. solani showed declining growth at potentials below -41.79 bars. Fungal growth at 35ºC was always higher than that growth at 15ºC, of all the water potentials tested. Significant differences observed in the response of mycelia to water potential and temperature as main and interactive effects. The viability of cultures was increasingly inhibited as the water potential dropped, but some growth was still observed at -99.56 bars. These findings could indicate that marine strains of F. solani have a physiological mechanism that permits survival in environments with low water potential. The observed differences in viability and the magnitude growth could indicate that the biological factors governing potential and actual growth are affected by osmotic potential in different ways.