918 resultados para PATTERN-RECOGNITION MOLECULES
Resumo:
The robotics community is concerned with the ability to infer and compare the results from researchers in areas such as vision perception and multi-robot cooperative behavior. To accomplish that task, this paper proposes a real-time indoor visual ground truth system capable of providing accuracy with at least more magnitude than the precision of the algorithm to be evaluated. A multi-camera architecture is proposed under the ROS (Robot Operating System) framework to estimate the 3D position of objects and the implementation and results were contextualized to the Robocup Middle Size League scenario.
Resumo:
The process of visually exploring underwater environments is still a complex problem. Underwater vision systems require complementary means of sensor information to help overcome water disturbances. This work proposes the development of calibration methods for a structured light based system consisting on a camera and a laser with a line beam. Two different calibration procedures that require only two images from different viewpoints were developed and tested in dry and underwater environments. Results obtained show, an accurate calibration for the camera/projector pair with errors close to 1 mm even in the presence of a small stereos baseline.
Resumo:
As novas tecnologias aplicadas ao processamento de imagem e reconhecimento de padrões têm sido alvo de um grande progresso nas últimas décadas. A sua aplicação é transversal a diversas áreas da ciência, nomeadamente a área da balística forense. O estudo de evidências (invólucros e projeteis) encontradas numa cena de crime, recorrendo a técnicas de processamento e análise de imagem, é pertinente pelo facto de, aquando do disparo, as armas de fogo imprimirem marcas únicas nos invólucros e projéteis deflagrados, permitindo relacionar evidências deflagradas pela mesma arma. A comparação manual de evidências encontradas numa cena de crime com evidências presentes numa base de dados, em termos de parâmetros visuais, constitui uma abordagem demorada. No âmbito deste trabalho pretendeu-se desenvolver técnicas automáticas de processamento e análise de imagens de evidências, obtidas através do microscópio ótico de comparação, tendo por base algoritmos computacionais. Estes foram desenvolvidos com recurso a pacotes de bibliotecas e a ferramentas open-source. Para a aquisição das imagens de evidências balísticas foram definidas quatro modalidades de aquisição: modalidade Planar, Multifocus, Microscan e Multiscan. As imagens obtidas foram aplicados algoritmos de processamento especialmente desenvolvidos para o efeito. A aplicação dos algoritmos de processamento permite a segmentação de imagem, a extração de características e o alinhamento de imagem. Este último tem como finalidade correlacionar as evidências e obter um valor quantitativo (métrica), indicando o quão similar essas evidências são. Com base no trabalho desenvolvido e nos resultados obtidos, foram definidos protocolos de aquisição de imagens de microscopia, que possibilitam a aquisição de imagens das regiões passiveis de serem estudadas, assim como algoritmos que permitem automatizar o posterior processo de alinhamento de imagens de evidências, constituindo uma vantagem em relação ao processo de comparação manual.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
This research aims to advance blinking detection in the context of work activity. Rather than patients having to attend a clinic, blinking videos can be acquired in a work environment, and further automatically analyzed. Therefore, this paper presents a methodology to perform the automatic detection of eye blink using consumer videos acquired with low-cost web cameras. This methodology includes the detection of the face and eyes of the recorded person, and then it analyzes the low-level features of the eye region to create a quantitative vector. Finally, this vector is classified into one of the two categories considered —open and closed eyes— by using machine learning algorithms. The effectiveness of the proposed methodology was demonstrated since it provides unbiased results with classification errors under 5%
Resumo:
Close homolog of L1, neural cell recognition molecules, c-fos, arg3.1, arc, immediat early genes, novelty, information processing, behavioral tests
Resumo:
Color image processing, pattern recognition, machine vision, application
Resumo:
Among the largest resources for biological sequence data is the large amount of expressed sequence tags (ESTs) available in public and proprietary databases. ESTs provide information on transcripts but for technical reasons they often contain sequencing errors. Therefore, when analyzing EST sequences computationally, such errors must be taken into account. Earlier attempts to model error prone coding regions have shown good performance in detecting and predicting these while correcting sequencing errors using codon usage frequencies. In the research presented here, we improve the detection of translation start and stop sites by integrating a more complex mRNA model with codon usage bias based error correction into one hidden Markov model (HMM), thus generalizing this error correction approach to more complex HMMs. We show that our method maintains the performance in detecting coding sequences.
Resumo:
Difficult tracheal intubation assessment is an important research topic in anesthesia as failed intubations are important causes of mortality in anesthetic practice. The modified Mallampati score is widely used, alone or in conjunction with other criteria, to predict the difficulty of intubation. This work presents an automatic method to assess the modified Mallampati score from an image of a patient with the mouth wide open. For this purpose we propose an active appearance models (AAM) based method and use linear support vector machines (SVM) to select a subset of relevant features obtained using the AAM. This feature selection step proves to be essential as it improves drastically the performance of classification, which is obtained using SVM with RBF kernel and majority voting. We test our method on images of 100 patients undergoing elective surgery and achieve 97.9% accuracy in the leave-one-out crossvalidation test and provide a key element to an automatic difficult intubation assessment system.
Resumo:
Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals.
Resumo:
The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.
Resumo:
The recognition of microbial pathogens based on their molecular patterns is essential for host defense. Recently, Toll-like receptors have been shown not only to recognize viruses as well as bacteria and fungi, but also to trigger an efficient immune response. A recent publication proposed that the retrovirus mouse mammary tumor virus exploits the pattern-recognition receptor Toll-like receptor 4 to achieve more efficient infection.
Resumo:
Inflammasomes are molecular platforms activated upon cellular infection or stress that trigger the maturation of proinflammatory cytokines such as interleukin-1beta to engage innate immune defenses. Strong associations between dysregulated inflammasome activity and human heritable and acquired inflammatory diseases highlight the importance this pathway in tailoring immune responses. Here, we comprehensively review mechanisms directing normal inflammasome function and its dysregulation in disease. Agonists and activation mechanisms of the NLRP1, NLRP3, IPAF, and AIM2 inflammasomes are discussed. Regulatory mechanisms that potentiate or limit inflammasome activation are examined, as well as emerging links between the inflammasome and pyroptosis and autophagy.
Resumo:
Pattern recognition receptors (PRRs) are commonly known as sensor proteins crucial for the early detection of microbial or host-derived stress signals by innate immune cells. Interestingly, some PRRs are also expressed and functional in cells of the adaptive immune system. These receptors provide lymphocytes with innate sensing abilities; for example, B cells express Toll-like receptors, which are important for the humoral response. Strikingly, certain other NOD-like receptors are not only highly expressed in adaptive immune cells, but also exert functions related specifically to adaptive immune system pathways, such as regulating antigen presentation. In this review, we will focus particularly on the current understanding of PRR functions intrinsic to B and T lymphocytes; a developing aspect of PRR biology.