986 resultados para Pós-graduandos
Resumo:
用溶液相金属盐沉积法在苯乙烯与4-乙烯基吡啶嵌段共聚物(PS-b-P4VP)胶束中制备了平均直径为12 nm的PS-b-P4VP/Co、PS-b-P4VP/CoSm(nCo∶nSm=3.8∶1,13.0∶1)、PS-b-P4VP/Sm纳米粒子。胶束溶液通过高温回流使磁性成核粒子和磁性金属原子的流动能力和扩散能力提高而获得尺寸均一的颗粒。
Resumo:
In polystyrene-block-poly(ethylene oxide) thin square platelets can be obtained via fast solvent evaporation by controlling the tethering density (0.08 < sigma < 0.11). The tethering density of the brushes is proportional to the thickness of the PEO crystal and increases with increasing initial solution heating temperature (T-i). When T-i < T-m, where T-m is the melting point of PEO, brushes with microphase-separated structures are observed. The formation of microphase-separated brushes depends on two factors: the strong incompatibility between PS and noncrystalline PEO chains (attached to the crystalline PEO) and the weak interaction between PS-PS brushes.
Resumo:
The reactive compatibilization of LLDPE/PS (50/50 wt%) was achieved by Friedel-Crafts alkylation reaction with a combined Lewis acids (Me3SiCl and InCl3 center dot 4H(2)O) as catalyst. The graft copolymer at the interface was characterized by Fourier transform infrared spectroscopy and the morphology of the blends was analysized by scanning electron microscopy. It was found that the combined Lewis acids had catalytic effect on Friedel-Crafts alkylation reaction between LLDPE and PS, and the catalytic effect was maximal when the molar ratio of InCl3 center dot 4H(2)O to Me3SiCl was 1:5. The graft copolymer LLDPE-g-PS was formed via the F-C reaction and worked as a tailor-made compatibilizer to reduce the interfacial tension. The mechanical properties of reactive blend with combined Lewis acids as catalyst was notably improved compared to that of physical LLDPE/PS blend and serious degradation had been decreased compared to the reactive blend system with AlCl3 as catalyst; we interpreted the above results in term of acidity of combined Lewis acids.
Resumo:
The rheological, morphological and mechanical properties of LLDPE/PS blends with a combined catalyst, Me3SiCl and InCl3 center dot 4H(2)O, were studied in this work. The higher complex viscosity and storage modulus at low frequency were ascribed to the presence of graft copolymers, which were in situ formed during the mixing process. From the rheological experiments, the complex viscosity and storage modulus of reactive blends were higher than the physical blends. The dispersion of LLDPE particles of reactive blending becomes finer than that of physical blends, consistent with the rheological results. As a result of increased compatibility between LLDPE/PS, the mechanical properties of reactive blends show much higher tensile and Izod impact strength than those of physical blends.
Resumo:
Amplified spontaneous emission (ASE) characteristics of a red fluorescent dye, 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), and a green fluorescent dye, (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1] benzopyrano [6,7,8-ij]quinohzin-11-one) (C545T) codoped polystyrene (PS) as the active medium were studied. It was found that the performance of ASE is greatly improved due to the introduction of C545T. By optimizing the concentrations of C545T and DCJTB in PS, an ASE threshold of 0.016 mJ pulse(-1), net gain of 52.71 cm(-1), and loss of 11.7 cm(-1) were obtained. The efficient Forster energy transfer from C545T to DCJTB was used to explain the improvement of the ASE performance in the coguest system.
Resumo:
Our previous investigation showed that the ordered hexagonal island pattern in the phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/P2VP) formed due to the convection effect by proper control of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to P2VP. In this paper, we further illustrate that, by adding a proper amount of the surfactant Triton X-100 to the PS/P2VP toluene solution, the ordered hexagonal island pattern can be transformed to the ordered honeycomb pattern. The effects of the amount of Triton X-100 on the surface morphology evolution and the pattern transformation are discussed in terms of the collapse of Triton X-100, phase separation between Triton X-100/P2VP and PS, the interfacial interaction between Triton X-100/P2VP and the mica substrate, and the Benard-Marangoni convection.
Resumo:
Well-ordered nanostructured polymeric supramolecular thin films were fabricated from the supramolecular assembly of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP)(H+) and poly(methyl methacrylate)-dibenzo-18-crown-6-poly(methyl methacrylate) (PMCMA). A depression Of cylindrical nanodomains was formed by the block of P4VP(H+) and PMCMA associates surrounded by PS. The repulsive force aroused from the incompatibility between the block of P4VP(H+) and PMCMA was varied through changing the molecule weight (M-w) of PMCMA, the volume fraction of the block of P4VP(H+), and annealing the film at high temperature. Increasing the repulsive force led to a change of overall morphology from ordered nanoporous to featureless structures. The effects of solvent nature and evaporation rate on the film morphology were also investigated. Further evolution of surface morphologies from nanoporous to featureless to nanoporous structures was observed upon exposure to carbon bisulfide vapors for different treatment periods. The wettability of the film surface was changed from hydrophilicity to hydrophobicity due to the changes of the film surface microscopic composition.
Resumo:
The phase behavior of a miscible PS/PVME (80/20, w/w) blend film in a confined geometry has been investigated at the annealing temperature much lower than the low critical solution temperature (LCST) of the blend. When the annealing temperature (52degreesC) is near the glass transition temperature of the blend (51.2degreesC), PVME-rich phase at the air-film surface under a microchannel forms smaller protrusion. When the annealing temperature is increased to 70degreesC, the protruding stripes, which are almost developed, are mainly composed of the mobile PVME-rich phase. These results reveal that the capillary force lead to the enrichment of PVME-rich phase at the air-polymer interface of a PDMS microchannel, that is, the capillary force lithography (CFL) can induce the phase separation of PS/PVME blend films.
Resumo:
The effects of the molecular weight of polystyrene (PS) component on the phase separation of PS/poly(4-vinylpyridine) (PS/P4VP) blend films on homogeneous alkanethiol self-assembled monolayer (SAM) and heterogeneous SAM/Au substrates have been investigated by means of atomic force microscopy (AFM). For the PS (22.4k)/P4VP (60k) system, owing to the molecular weight of PS component is relatively small, the well-aligned PS and P4VP stripes with good thermal stability are directed by the patterned SAM/Au surfaces. With the increase of the molecular weight of PS component (for the PS (582k)/P4VP (60k) system), the diffusion of P4VP is hindered by the high viscosity of PS during the fast spin-coating process. The phase separation behavior of PS/P4VP on the SAM/Au patterned substrates is similar to that on the homoueneous SAM and cannot be easily directed by the patterned SAM surfaces even though the characteristic length of the lateral domain morphology is commensurate with the stripe width.
Resumo:
Ordered hexagonal droplets patterns in phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/PVP) formed due to the convection effect by solvent evaporation. The influences of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to PVP on the PVP-rich domains pattern formation and distributions were investigated by atomic force microscope (AFM). Only in an appropriate range of molecular weight of PS, can the ordered pattern form. Too low or too high molecular weight of PS led no ordered pattern due to the viscosity effects. The increase of solvent evaporation rate decreased the mean radius of the PVP-rich domains and the intervals between the centers of the domains due to the enhancement of the viscosity on the top layer of the fluid film. The increase of the weight ratio of PS to PVP decreased mean radius of the PVP-rich domains whereas the intervals between the centers of droplets remained constant. Therefore, the size and the distributions of ordered patterns can be tuned by the polymer molecular weight, the weight ratio of the two components and the solvent evaporation rate.
Resumo:
The surface morphology evolution of three thin polystyrene (PS)/polymethyl methacrylate (PMMA) blend films (<70 nm) on SiOx substrates upon annealing were investigated by atomic force microscopy (AFM) and some interesting phenomena were observed. All the spin-coated PS/PMMA blend films were not in thermodynamic equilibrium. For the 67.1 and the 27.2 nm PS/PMMA blend films, owing to the low mobility of the PMMA-rich phase layer at substrate surfaces and interfacial stabilization caused by long-range van der Waals forces of the substrates, the long-lived metastable surface morphologies (the foam-like and the bicontinuous morphologies) were first observed. For the two-dimensional ultrathin PS/PMMA blend film (16.3 nm), the discrete domains of the PS-rich phases upon the PMMA-rich phase layer formed and the secondary phase separation occurred after a longer annealing time.
Resumo:
The three scaling parameters described in Sanchez-Lacombe lattice fluid theory (SLLFT), T*, P* and rho* of pure polystyrene (PS), pure poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and their mixtures are obtained by fitting corresponding experimental pressure volume-temperature data with equation-of-state of SLLFT. A modified combining rule in SLLFT used to match the volume per mer, v* of the PS/PPO mixtures was advanced and the enthalpy of mixing and Flory-Huggins (FH) interaction parameter were calculated using the new rule. It is found that the difference between the new rule and the old one presented by Sanchez and Lacombe is quite small in the calculation of the enthalpy of mixing and FH interaction parameter and the effect of volume-combining rule on the calculation of thermodynamic properties is much smaller than that of energy-combining rule. But the relative value of interaction parameter changes much due to the new volume-based combining rule. This effect can affect the position of phase diagram very much, which is reported elsewhere [Macromolecules 34 (2001) 6291]
Resumo:
In the framework of lattice fluid model, the Gibbs energy and equation of state are derived by introducing the energy (E-s) stored during flow for polymer blends under shear. From the calculation of the spinodal of poly(vinyl methyl ether) (PVME) and polystyrene (PS) mixtures, we have found the influence of E., an equation of state in pure component is inappreciable, but it is appreciable in the mixture. However, the effect of E, on phase separation behavior is extremely striking. In the calculation of spinodal for the PVME/PS system, a thin, long and banana miscibility gap generated by shear is seen beside the miscibility gap with lower critical solution temperature. Meanwhile, a binodal coalescence of upper and lower miscibility gaps is occurred. The three points of the three-phase equilibrium are forecasted. The shear rate dependence of cloud point temperature at a certain composition is discussed. The calculated results are acceptable compared with the experiment values obtained by Higgins et at. However, the maximum positive shift and the minimum negative shift of cloud point temperature guessed by Higgins are not obtained, Furthermore, the combining effects of pressure and shear on spinodal shift are predicted.