265 resultados para Oysters


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the chromosome ploidy level of Marsupenaeus (Penaeus) japonicus (Bate) non-viable (unhatched) embryos and nauplii after exposure to 6-dimethylaminopurine (6-DMAP), timed to stop either polar body (PB) I, or PBI and II extrusion. Embryos from eight separate families or spawnings were exposed to 150 or 200 mu M 6-DMAP from 1- to 3-min post-spawning detection (psd) for a 4- to 5-min duration (timed to stop PBI extrusion). Separate aliquots of embryos from five of the same spawnings were also exposed to 200 mu M of 6-DMAP from 1- to 3-min psd for a 16-min duration (timed to stop both PBI and II extrusion). For one spawning, a third aliquot of embryos was exposed to 400 p M of 6-DMAP from 1- to 3-min psd for a 16-min duration (timed to stop both PBI and II extrusion). At 18-h psd, non-viable embryo and nauplii samples were taken separately for fluorescent activated cell sorting (FACS). FACS revealed that there were diploids and triploids among all treated non-viable embryos and nauplii. All control non-viable embryos and nauplii were diploid. Percentages of triploid induction for the 4- to 5-min and 16-min durations were not significantly different (P > 0.05). Additionally, no difference was found in the triploidy level of nonviable embryos compared to nauplii in these treatments. The percentage of triploid embryos and nauplii when exposed to 6-DMAP for a 4- to 5-min duration ranged from 29.57% to 99.23% (average 55.28 +/- 5.45%) and from 5.60% to 98.85% (average 46.70 +/- 7.20%), respectively. The percentage of triploid embryos and nauplii when exposed to 6-DMAP for a 16-min duration ranged from 11.71% to 98.96% (average 52.49 +/- 11.00%) and from 47.5% to 99.24% (average 79.38 +/- 5.24%), respectively. To our knowledge, this is the first documentation of successful PBI or PBI and II inhibition in shrimp. This study conclusively shows that treatment of M. japonicus embryos with 6-DMAP at 1- to 3-min pscl for either a 4- to 5-min duration (timed to stop PBl extrusion) or 16-min duration (timed to stop both PBI and II extrusion) results in viable triploid nauplii. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present experiments that examined the metamorphosis, growth, and survivorship of larvae from three species of commercially and ecologically valuable shellfish (Mercenaria mercenaria, Argopecten irradians, and Crassostrea virginica) at the levels of CO2 projected to occur during the 21st century and beyond. Under CO2 concentrations estimated to occur later this century (~66 Pa, 650 ppm), M. mercenaria and A. irradians larvae exhibited dramatic declines (>50%) in survivorship as well as significantly delayed metamorphosis and significantly smaller sizes. Although C. virginica larvae also experienced lowered growth and delayed metamorphosis at ~66 Pa CO2, their survival was only diminished at ~152 Pa CO2. The extreme sensitivity of larval stages of shellfish to enhanced levels of CO2 indicates that current and future increases in pelagic CO2 concentrations may deplete or alter the composition of shellfish populations in coastal ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic carbon dioxide (CO2) emissions reduce pH of marine waters due to the absorption of atmospheric CO2 and formation of carbonic acid. Estuarine waters are more susceptible to acidification because they are subject to multiple acid sources and are less buffered than marine waters. Consequently, estuarine shell forming species may experience acidification sooner than marine species although the tolerance of estuarine calcifiers to pH changes is poorly understood. We analyzed 23 years of Chesapeake Bay water quality monitoring data and found that daytime average pH significantly decreased across polyhaline waters although pH has not significantly changed across mesohaline waters. In some tributaries that once supported large oyster populations, pH is increasing. Current average conditions within some tributaries however correspond to values that we found in laboratory studies to reduce oyster biocalcification rates or resulted in net shell dissolution. Calcification rates of juvenile eastern oysters, Crassostrea virginica, were measured in laboratory studies in a three-way factorial design with 3 pH levels, two salinities, and two temperatures. Biocalcification declined significantly with a reduction of ~0.5 pH units and higher temperature and salinity mitigated the decrease in biocalcification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bivalve calcification, particularly of the early larval stages, is highly sensitive to the change in ocean carbonate chemistry resulting from atmospheric CO2 uptake. Earlier studies suggested that declining seawater [CO32-] and thereby lowered carbonate saturation affect shell production. However, disturbances of physiological processes such as acid-base regulation by adverse seawater pCO2 and pH can affect calcification in a secondary fashion. In order to determine the exact carbonate system component by which growth and calcification are affected it is necessary to utilize more complex carbonate chemistry manipulations. As single factors, pCO2 had no effects and [HCO3-] and pH had only limited effects on shell growth, while lowered [CO32-] strongly impacted calcification. Dissolved inorganic carbon (CT) limiting conditions led to strong reductions in calcification, despite high [CO32-], indicating that [HCO3-] rather than [CO32-] is the inorganic carbon source utilized for calcification by mytilid mussels. However, as the ratio [HCO3-] / [H+] is linearly correlated with [CO32-] it is not possible to differentiate between these under natural seawater conditions. An equivalent of about 80 µmol kg-1 [CO32-] is required to saturate inorganic carbon supply for calcification in bivalves. Below this threshold biomineralization rates rapidly decline. A comparison of literature data available for larvae and juvenile mussels and oysters originating from habitats differing substantially with respect to prevailing carbonate chemistry conditions revealed similar response curves. This suggests that the mechanisms which determine sensitivity of calcification in this group are highly conserved. The higher sensitivity of larval calcification seems to primarily result from the much higher relative calcification rates in early life stages. In order to reveal and understand the mechanisms that limit or facilitate adaptation to future ocean acidification, it is necessary to better understand the physiological processes and their underlying genetics that govern inorganic carbon assimilation for calcification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcitic belemnite rostra are usually employed to perform paleoenvironmental studies based on geochemical data. However, several questions, such as their original porosity and microstructure, remain open, despite they are essential to make accurate interpretations based on geochemical analyses.This paper revisits and enlightens some of these questions. Petrographic data demonstrate that calcite crystals of the rostrum solidum of belemnites grow from spherulites that successively develop along the apical line, resulting in a “regular spherulithic prismatic” microstructure. Radially arranged calcite crystals emerge and diverge from the spherulites: towards the apex, crystals grow until a new spherulite is formed; towards the external walls of the rostrum, the crystals become progressively bigger and prismatic. Adjacent crystals slightly vary in their c-axis orientation, resulting in undulose extinction. Concentric growth layering develops at different scales and is superimposed and traversed by a radial pattern, which results in the micro-fibrous texture that is observed in the calcite crystals in the rostra.Petrographic data demonstrate that single calcite crystals in the rostra have a composite nature, which strongly suggests that the belemnite rostra were originally porous. Single crystals consistently comprise two distinct zones or sectors in optical continuity: 1) the inner zone is fluorescent, has relatively low optical relief under transmitted light (TL) microscopy, a dark-grey color under backscatter electron microscopy (BSEM), a commonly triangular shape, a “patchy” appearance and relatively high Mg and Na contents; 2) the outer sector is non-fluorescent, has relatively high optical relief under TL, a light-grey color under BSEM and low Mg and Na contents. The inner and fluorescent sectors are interpreted to have formed first as a product of biologically controlled mineralization during belemnite skeletal growth and the non-fluorescent outer sectors as overgrowths of the former, filling the intra- and inter-crystalline porosity. This question has important implications for making paleoenvironmental and/or paleoclimatic interpretations based on geochemical analyses of belemnite rostra.Finally, the petrographic features of composite calcite crystals in the rostra also suggest the non-classical crystallization of belemnite rostra, as previously suggested by other authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boccardia proboscidea is a recently introduced polychaete in South Africa where it is a notorious pest of commercially reared abalone. Populations were originally restricted to abalone farms but a recent exodus into the wild at some localities has raised conservation concerns due to the species’ invasive status in other parts of the world. Here, we assessed the dispersal potential of B. proboscidea by using a population genetic and oceanographic modeling approach. Since the worm is in its incipient stages of a potential invasion, we used the closely related Polydora hoplura as a proxy due its similar reproductive strategy and its status as a pest of commercially reared oysters in the country. Populations of P. hoplura were sampled from seven different localities and a section of the mtDNA gene, Cyt b and the intron ATPSa was amplified. A high resolution model of the coastal waters around southern Africa was constructed using the Regional Ocean Modeling System. Larvae were represented by passive drifters that were deployed at specific points along the coast and dispersal was quantified after a 12-month integration period. Our results showed discordance between the genetic and modeling data. There was low genetic structure (Φ = 0.04 for both markers) and no geographic patterning of mtDNA and nDNA haplotypes. However, the dispersal model found limited connectivity around Cape Point—a major phylogeographic barrier on the southern African coast. This discordance was attributed to anthropogenic movement of larvae and adult worms due to vectors such as aquaculture and shipping. As such, we hypothesized that cryptic dispersal could be overestimating genetic connectivity. Though wild populations of B. proboscidea could become isolated due to the Cape Point barrier, anthropogenic movement may play the critical role in facilitating the dispersal and spread of this species on the southern African coast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boccardia proboscidea is a recently introduced polychaete in South Africa where it is a notorious pest of commercially reared abalone. Populations were originally restricted to abalone farms but a recent exodus into the wild at some localities has raised conservation concerns due to the species’ invasive status in other parts of the world. Here, we assessed the dispersal potential of B. proboscidea by using a population genetic and oceanographic modeling approach. Since the worm is in its incipient stages of a potential invasion, we used the closely related Polydora hoplura as a proxy due its similar reproductive strategy and its status as a pest of commercially reared oysters in the country. Populations of P. hoplura were sampled from seven different localities and a section of the mtDNA gene, Cyt b and the intron ATPSa was amplified. A high resolution model of the coastal waters around southern Africa was constructed using the Regional Ocean Modeling System. Larvae were represented by passive drifters that were deployed at specific points along the coast and dispersal was quantified after a 12-month integration period. Our results showed discordance between the genetic and modeling data. There was low genetic structure (Φ = 0.04 for both markers) and no geographic patterning of mtDNA and nDNA haplotypes. However, the dispersal model found limited connectivity around Cape Point—a major phylogeographic barrier on the southern African coast. This discordance was attributed to anthropogenic movement of larvae and adult worms due to vectors such as aquaculture and shipping. As such, we hypothesized that cryptic dispersal could be overestimating genetic connectivity. Though wild populations of B. proboscidea could become isolated due to the Cape Point barrier, anthropogenic movement may play the critical role in facilitating the dispersal and spread of this species on the southern African coast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protozoan parasite Marteilia refringens has been partly responsible for the severe decrease in the production of the European flat oyster Ostrea edulis Linnaeus in France since the 1970s. The calanoid copepod Paracartia grani Sars was recently found to be a host for M refringens in French shallow-water oyster ponds ('claires'). This study reconsidered M refringens transmission dynamics in the light of this finding, taking into account not only oyster infection dynamics and environmental factors but also data concerning the copepod host. P. grani population dynamics in the claire under study revealed that this species is the dominant planktonic copepod in this confined ecosystem. During winter, M refringens overwintered in O. edulis, with P. grani existing only as resting eggs in the sediment. The increase in temperature in spring controlled and synchronized both the release of M refringens sporangia in the oyster feces, and the hatching of the benthic resting eggs of the copepod. Infection of oysters by M refringens was limited to June, July and August, coinciding with (1) the highest temperature recorded in the claire, and (2) the highest abundance of P. grani. PCR detection of M refringens in P. grani during the summer period was linked to the release of parasite sporangia by the oyster. Our results are supported by previous results on the effective transmission of this parasite from the oyster to the copepod.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of maturation and spawning of the oyster is part of a research program to investigate the summer mortalities of the oysters, Crassostrea gigas in Marennes-Oléron Bay. Four maturity stages were simultaneously obtained by diet and thermal conditioning (immature, low maturation, mature and post-spawning stages). Measurements of clearance, filtration, absorption and respiration rates allowed a calculation of the scope for growth and hence an estimation of the oyster's energetic budget at various maturity stages. Male and female oysters had similar physiological responses. The filtration rate ranged from 2.4 to 2.6 1.h(-1) at the early stages of maturation and decreased to 1.8 1.h.' during the maturity stage. Growth rate resulting from gonad development did not induce filtration rate changes. Mature 2.5 and 1.5-year-old oysters showed a negative energy budget reaching -15 and -90 J.h(-1) respectively. By contrast, non-ripe oysters had scope for growth in the range 110 to 170 J.h(-1). A negative energy budget during the high maturation stage resulted from a reduced absorption efficiency. A new allometric relationship for the respiration model of C. gigas was defined during vitellogenesis with a 0.574 coefficient value. Based on Our results, the oyster's physiological weakness during vitellogenesis should be considered as a part of explanation for spring and summer mortalities of cultured oysters in Marennes-Oléron Bay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of sexual maturation and spawning in the Pacific oyster (Crassostrea gigas) is part of a vast research programme that endeavours to understand the causes of mortality that occur sporadically during the spring and summer seasons in the Marennes-Oléron Bay. Thermal and diet conditioning were used to obtain oysters at each stage of maturity simultaneously. Using the measured rates of clearance, consumption, absorption and respiration provided estimates of growth potential and gave the energetic budget of oysters at different stages of sexual maturity. Physiological responses were similar for males and females. Filtration decreased from 2.4 to 2.6 l.h (-1) to 1.8 l.h (-1) with increasing maturity. Weight gain was associated with gonad development and did not appear to have an effect on the clearance rate. Oysters 2.5 years old showed a negative energy budget (-15 J h (-1)) at later maturity stages. This deficit was confirmed (90 J.h (-1)) in oysters 1.5 years old at the same stage of maturity. On the contrary, immature oysters, in the early stages of maturity or post-spawning, had a growth potential of 110 to 170 J.h (-1). The energy deficit observed at later stages of maturity was primarily due to absorption, which decreased sharply during peak gametogenesis. Using measured respiration rates, an allometric relationship specific to gonad growth was determined with a coefficient of 0.574. Low physiological performance of oysters, observed at later stages of sexual maturity, must be taken into account in research on the factors responsible for spring and summer mortalities affecting oyster farms in Marennes-Oléron.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among bivalve species, the Pacific oyster, Crassostrea gigas, is the most economically important bivalve production over the world. Today, C. gigas is subject to an important production effort that leads to an intensive artificial selection. Larval stage is relatively unknown, specifically in a domestication context. Genetic consequence of artificial selection is still at a preliminary study. We aimed to tackle the consequence of inconscient domestication on the variance reproductive success focusing on larval stage, keystone of the life cycle. We studied two kinds of specific selective processes that common hatchery rearing practices exert : the effect of discarding the smallest larvae on genetic diversity and the artificial environment rearing effect via the temperature providing a contrast resembling wild versus hatchery conditions (20 and 26°C). In order to monitor the effect of the selection of fast growing larvae by sieving, growth variability and genetic diversity in a larval population descended from a factorial breeding was studied. We used a mixed-family approach to reduce potentially confounding environmental biais. The retrospective assignment of individuals to family groups has been performed using a three microsatellite markers set. Two different rearing were carried out in parallel. For three (replicates) 50-l tanks, the smallest larvae were progressively discarded by selective sieving, whereas for the three others no selective sieving was performed. The intensity of selective sieving was adjusted so as to discard 50% of the larvae over the whole rearing period in a progressive manner. As soon as the larvae reached the pediveliger stage, ready to settle larvae were sampled for genetic analysis. Regarding the artificial environment rearing effect via the temperature, we used a similar mixed-family approach. The progeny from a factorial breeding design was divided as follows: three (replicates) 50-l tanks were dedicaced to a rearing at 26°C versus 20°C for three others 50-l tanks. The whole size variability was preserved for this experiment. Individual growth measurements for larvae genetically identified have been performed at days 22 and 30 after fertilization for both conditions. In a same way, we collected individual measurements for genotyped juvenile oysters (80 days after fertilization). At a phenotypic scale, relative survival and settlement success for larvae with sieving were higher. Sieving appears as a time-saving process associated with a better relative survival ratio. But in the same time, our results confirm that a significant genetic variability exist for early developmental traits in the Pacific oyster. This is congruent with the results already obtained that investigated genetic variability and genetic correlations in early life-history traits of Crassostrea gigas. Discarding around 50% of the smallest larvae can lead to significant selection at the larval stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two oyster species are currently present along the French coasts : the indigenous European flat oyster (Ostrea edulis), and the Pacific cupped oyster (Crassostrea gigas), that has been introduced from Japan since the beginning of the 70ies. The flat oyster successively suffered from two protozoan diseases during the 60ies and its production decreased from 20 000 tons/year by that time to 1 500 tons/year nowadays. Consequently, the oyster production is principally (99%) based upon the Pacific oyster species with approximately 150 000 tons/year among which 90% are grown from the natural spat. However, the hatchery production of this species is developing and was estimated to 400 to 800 millions spat in 2002. Moreover, strengthened relationships between IFREMER and the 5 commercial hatcheries, that all joined the SYSAAF (Union of the French poultry, shellfish and fish farming selectors), allow to plan for new genetic breeding programs. At the end of the 80ies, IFREMER initiated a genetic breeding program for the resistance of the European flat oyster to the bonamiosis, and obtained strains more tolerant to this disease. After two generations of massal selection, molecular markers had identified a reduced genetic basis in this program. It was then reoriented to an intra-familial selection. However, we were confronted to a zootechnic problem to manage such a scheme and we compromised by an intra-cohorts of families selection scheme managed using molecular markers. The program has now reached the transfer level with experimentation at a professional scale. Concerning the Pacific cupped oyster, and in parallel with the obtaining and the study of polyploids, performance of different Asian cupped oyster strains were compared to the one introduced in France thirty years ago and currently suffering from summer mortalities. The local strain exhibited better performance, certainly based upon a good local adaptation. In other respects, although early growth is a relevant criteria for selection for growth to commercial stage, it is not to be privileged in the context of an oyster producing region with a limited food availability. Contrary, the spat summer mortality became a priority for numerous teams (genetic, physiology, pathology, ecology,...) joined in the MOREST program. The first results showed important survival differences between fullsib and halsib families. They indicate a genetic determinism to this character "survival" and promote for its selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upper-Jurassic geschiebe-corals (Thamnasteria concinna) from a gravel-/sandpit at Freden/Leine are described. They are slightly bored by bivalves (Gastrochaenolites) and worms (Trypanites). Some oysters (Nanogyra Inana) encrusted the surface. The corals growed as massiv head-like (bulbous) colonies with "multicolumnar growth form" and ragged outlines. Similar shaped colonies are reported from Easteuropean Upper Jurassic (Pommerania), but are never reported for NW-Germany. Beds in which the coral-geschiebe were found - Drenthe stage in age - contain a high content of local geschiebe-material. The low degree of abrasion of the coral-geschiebe indicates short glacial transportation. It is possible, that the geschiebe originate from the Heersumer Schichten from Selter to Thüster Berg.