997 resultados para Oxygen Heterocyc|es


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid oxide galvanic cells using CaO-ZrO2 and CaO-ZrO2 in combination with YO1.5-ThO2 as electrolyte were used to determine the free energy of formation of hercynite from 750–1600°C. The formation reaction is 2Fe(s,1) + O2(g) + Al2O3(α) = 2FeO.Al2O3(s)for which ΔG° = − 139,790 + 32.83T (±300) cals. (750–1536°C) ΔG° = − 146,390 + 36.48T (±300) cals. (1536–1700°C)These measurements can be used to resolve the discrepancies that exist in published thermochemical data, and provide an accurate oxygen potential standard for calibrating and assessing the performance of oxygen probes under steelmaking conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From electromotive force (emf) measurements using solid oxide galvanic cells incorporating ZrOz-CaO and ThOz-YO~.s electrolytes, the chemical potentials of oxygen over the systems Fe + FeCrzO 4 + Cr20 ~ and Fe + FeV204 + V203 were calculated. The values may be represented by the equations: 2Fe(s, I) + Oz(g) + 2Cr2Oa(s) -- 2FeCr204 (s)Akto2 = - 151,400 + 34.7T (• cal= -633,400 + 145.5T(• J (750 to 1536~ A~tO2 = -158,000 + 38.4T(• cal= -661,000 + 160.5T(*1250) J (1536 to 1700~2Fe (s, I) + O2 (g) + 2V203 (s) -- 2FeV204 (s) A/~Oz = - 138,000 + 29.8T(+300) cal= - 577,500 + 124.7T (• J (750 to 1536~A/IO2 = -144,600 + 33.45T(-300) cal = -605,100 + 140.0T(~-1250) J (1536 to 1700~At the oxygen potentials corresponding to Fe + FeCrzO a + Cr203 equilibria, the electronic contribution to the conductivity of ZrO2-CaO electrolyte was found to affect the measured emf. Application of a small 60 cycle A.C. voltage with an amplitude of 50 mv across the cell terminals reduced the time required to attain equilibrium at temperatures between 750 to 9500C by approximately a factor of two. The second law entropy of iron chromite obtained in this study is in good agreement with that calculated from thermal data. The entropies of formation of these spinel phases from the component oxides can be correlated to cation distribution and crystal field theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility of oxygen in liquid gallium in the temperature range 775 –1125 °C and in liquid gallium-copper alloys at 1100 °C, in equilibrium with β-Ga2O3, has been measured by an isopiestic equilibrium technique. The solubility of oxygen in pure gallium is given by the equation log (at.% O) = −7380/T + 4.264 (±0.03) Using recently measured values for the standard free energy of formation of β-Ga2O3 and assuming that oxygen obeys Sievert's law up to the saturation limit, the standard free energy of solution of oxygen in liquid gallium may be calculated : View the MathML sourceΔ°298 = −52 680 + 6.53T (±200) cal where the standard state for dissolved oxygen is an infinitely dilute solution in which the activity is equal to atomic per cent. The effect of copper on the activity of oxygen dissolved in liquid gallium is found to be in good agreement with that predicted by a recent quasichemical model in which it was assumed that each oxygen is interstitially coordinated to four metal atoms and that the nearest neighbour metal atoms lose approximately half their metallic cohesive energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility of oxygen in liquid indium in the temperature range 650–820 °C and in liquid copper-indium alloys at 1100 °C in equilibrium with indium sesquioxide has been measured by a phase equilibration technique. The solubility of oxygen in pure indium is given by the relation log(at.% O) = −4726/T + 3.73 (±0.08) Using the recently measured values for the standard free energy of formation of In2O3 and assuming that oxygen obeys Sievert's law up to saturation, the standard free energy of solution of molecular oxygen in liquid indium is calculated as View the MathML sourceΔG°= −51 440 + 8.07 T (±500) cal where the standard state for dissolved oxygen is an infinitely dilute solution in which activity is equal to atomic per cent. The effect of indium additions on the activity coefficient of oxygen dissolved in liquid copper was measured by a solid oxide galvanic cell. The interaction parameter ϵ0In is given by View the MathML source The experimentally determined variation of the activity coefficient of oxygen in dilute solution in Cu-In alloys is in fair agreement with that predicted by a quasichemical model in which each oxygen atom is assumed to be interstitially coordinated to four metal atoms and the nearest neighbour metal atoms are assumed to lose approximately half their metallic cohesive energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility of oxygen in liquid germanium in the temperature range 1233 to 1397 K, and in liquid germanium-copper alloys at 1373 K, in equilibrium with GeO2 has been measured by the phase equilibration technique. The solubility of oxygen in pure germanium is given by the relation R470 log(at. pct 0)=-6470/T+4.24 (±0.07). The standard free energy of solution of oxygen in liquid germanium is calculated from the saturation solubility, and recently measured values for the free energy of formation of GeO2, assuming that oxygen obeys Sievert’s law up to the saturation limit. For the reaction, 1/2 O2(g)→ OGe ΔG° =-39,000 + 3.21T (±500) cal = -163,200 + 13.43T (±2100) J. where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct), in the limit, as concentration approaches zero. The effect of copper on the activity of oxygen dissolved in liquid germanium is found to be in good agreement with that predicted by a quasichemical model in which each oxygen was assumed to be bonded to four metal atoms and the nearest neighbor metal atoms to an oxygen atom are assumed to lose approximately half of their metallic bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility limit of oxygen in liquid antimony has been measured by a novel isopiestic technique in the temperature range 995--1175 deg K. The results can be expressed by the equation log c = --5500/T + 3.754 ( plus/minus 0.04) with c in at.% O and T in deg K. The oxygen potential over Sb + O alloys equilibrium with Sb2O3 has been measured by a solid state cell using a fully stabilized CaO.ZrO2 electrolyte. The cell was designed to contain the Sb + Sb2O3 mixture in a closed volume, that the vaporization of the oxide can be minimized and true equilibrium attained. The Gibbs free energy of the reaction 2 Sb(s) + 3/2 O2 = Sb2O3(s) is Delta G deg = --719560 + 274.51 T( plus/minus 500) and Sb(l) + 3/2 O2 = Sb2O3(l), Delta G deg = --704711 + ( plus/minus 500) ( Delta G deg in J/mole, T in deg K). The combination of these results with Sieverts' law yields the standard free energy of solution of oxygen in liquid antimony according to the reaction 1/2 O2 = \O\Sb,at.% as Delta G deg = --129620 + 14.23 T ( plus/minus 950). The standard enthalopy and entropy of the solution of oxygen in Sb are compared with values for other metal- oyxgen systems, and with the standard enthalpies of formation of corresponding oxides. The resulting correlations permit the estimation of the standard free energy of solution of oxygen in pure metals for which experimental information is lacking. 24 ref.--AA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen concentration of liquid manganese in equilibrium with MnAl2+2xO4+3x and α−Al2O3 has been determined in the temperature range 1520 to 1875 K. The oxygen content of quenched samples, wrapped in oxygen-free nickel foil, was determined by an inert gas fusion technique. The results are combined with accurate data now available on the Gibbs energies of formation of MnO and Al2O3−saturated MnAl2+2xO4+3x to derive the oxygen content of liquid manganese in equilibrium with MnO and the Gibbs energy of solution of diatomic oxygen gas in liquid manganese. The enthalpy and entropy of solution of oxygen in manganese are compared with similar data on other metal-oxygen systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion of SAE 310 stainless steel in H2-H2O-H2S gas mixtures was studied at a constant temperature of 1150 K. Reactive gas mixtures were chosen to yield a constant oxygen potential of approximately 6 × 10-13 Nm-2 and sulfur potentials ranging from 0.19 × 10-2 Nm-2 to 33 × 10-2 Nm-2. The kinetics of corrosion were determined using a thermobalance, and the scales were analyzed using metallography, scanning electron microscopy, and energy dispersive X-ray analysis. Two corrosion regimes, which were dependent on sulfur potential, were identified. At high sulfur potentials (P S 2 ± 2.7 × 10-2 Nm-2) the corrosion rates were high, the kinetics obeyed a linear rate equation, and the scales consisted mainly of sulfide phases similar to those observed from pure sulfidation. At low sulfur potentials (P S 2 ± 0.19 × 10-2 Nm-2) the corrosion rates were low, the kinetics obeyed a parabolic rate equation, and scales consisted mainly of oxide phases. Thermochemical diagrams for the Fe-Cr-S-O, Fe-Ni-S-O, Cr-Ni-S-O, and Si-Cr-S-O systems were constructed, and the experimental results are discussed in relation to these diagrams. Based on this comparison, reasonable corrosion mechanisms were developed. At high sulfur potentials, oxide and sulfide phases initially nucleate as separate islands. Overgrowth of the oxide by the sulfide occurs and an exchange reaction governs the corrosion process. Preoxidation at low oxygen potentials and 1150 K is beneficial in suppressing sulfidation at high sulfur potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen concentration of liquid cobalt in equilibrium with cobalt aluminate and a-alumina has been measured by suction sampling and crucible quenching techniques at temperatures between 1770 and 1975 K. Experiments were made with cobalt of high and low initial oxygen contents, and with and without the addition of cobalt aluminate. The effect of temperature on the equilibrium oxygen content is represented by the equation, log (at.% 0) = -10,4001T(K) + 4.64 (±0.008). The composition of the spinel phase, CoO.(1+x)AI20 3, saturated with alumina, has been determined by electron probe microanalysis. The values of x are 0.22 at 1770 Kand 0.28 at 1975 K. The oxygen potential corresponding to the three-phase equilibrium between cobalt, aluminate and alumina, and the standard Gibbs' energy of formation of nonstoichiometric cobalt aluminate are evaluated by combining the results of this study with recently published data on the activity of oxygen in liquid cobalt. Implications of the present results to aluminium deoxidation of liquid cobalt are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The limiting solubility of oxygen in liquid nickel in equilibrium withα-alumina and nickel aluminate has been measured by inert gas fusion analysis of suction samples in the temperature range 1730 to 1975 K. The corresponding oxygen potential has been monitored by a solid electrolyte cell consisting of calcia stabilized zirconia as the electrolyte and Mo + MoO2 as the reference electrode. The results can be summarized by the following equations: log(at. pct O) = \frac - 10,005T + 4.944 ( ±0.015)log(atpctO)=T−10005+4944(0015) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn DmO2 /4.606RT = log P O2 1/2 = \frac - 13,550T + 4.411 ( ±0.009)O24606RT=logPO212=T−13550+4411(0009) From simultaneous measurements of the potential and concentration of oxygen in melts, not in thermodynamic equilibrium with alumina and aluminate phases, information on the composition dependence of the activity coefficient and the standard free energy of solution of oxygen is obtained. For the reaction, $\frac{1}{2} O_2 \to \underset{\raise0.3em\hbox{$Missing close brace ΔG o = -72,930 - 7.11T (±840) J gr.at.–1 = + 0.216 at. pct OlogfO=T−500+0216atpctO where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct) in the limit as concentration approaches zero. The oxygen solubility in liquid nickel in equilibrium with solid NiO, evaluated from thermodynamic data, is compared with information reported in the literature. Implications of the results to the deoxidation equilibria of aluminum in nickel are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental characterization of three-phase equilibria in Fe--V--O and Fe--Nb--O systems at 1823, 1873 and 1923K has been carried out using a solid state cell and by analysis of quenched samples. The oxygen potentials corresponding to these three-phase equilibria were monitored by a solid state cell incorporating Y sub 2 O sub 3 doped ThO sub 2 with Cr + Cr sub 2 O sub 3 as reference electrode. Similar measurements were carried out for Fe--Nb--O alloys in equilibrium with a mixture of FeNb sub 2 O sub 6 and NbO sub 2 . These measurements permit evaluation of interaction parameters (e exp V sub O = --6590/T + 2.892 and e exp Nb sub O = --4066/T + 1.502) and activity coefficients of vanadiun and niobium in dilute solution (ln gamma exp O sub V = --35 320/T + 12.68 and ln gamma sub Nb exp O = --12 386/T + 4.34) in liquid iron. The results obtained in this study resolve a number of discrepancies in thermodynamic data reported in the literature, especially regarding the activity coefficients of V and Nb and the stability ranges for V sub 2 O sub 3 and VO sub 1+x . 18 ref.--AA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On lowering the oxygen potential, the tetragonal phase of YBa2Cu3O7−δ was found to decompose into a mixture of Y2BaCuO5, BaCuO2 and BaCu2O2 in the temperature range 773–1173 K. The 123 compound was contained in a closed crucible of yttria-stabilized zirconia in the temperature range 773–1073 K. Oxygen was removed in small increments by coulometric titration through the solid electrolyte crucible at constant temperature. The oxygen potential was calculated from the open circuit e.m.f. of the solid state cell after successive titrations. Pure oxygen at a pressure of 1.01 × 105 Pa was used as the reference electrode. The decomposition of the 123 compound manifested as a plateau in oxygen potential. The decomposition products were identified by X-ray diffraction. At temperatures above 1073 K there was some evidence of reaction between the 123 compound, solid electrolyte crucible and platinum. For measurements above 1073 K, the 123 compound was contained in a magnesia crucible placed in a closed outer silica tube. The oxygen potential in the gas phase above the 123 compound was controlled and measured by a solid state cell based on yttria-stabilized zirconia which served both as a pump and sensor. The lower oxygen potential limit for the stability of the 123 compound is given by View the MathML source The oxygen non-stoichiometric parameter δ for the 123 compound has a value of 0.98 (View the MathML source) at dissociation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation of equilibrium oxygen potential with oxygen concentration inYBa 2Cu3O7-δhas been measured in the temperature range of 773 to 1223 K. For temperatures up to 1073 K, the oxygen content of theYBa 2Cu3O7-δsample, held in a stabilized-zirconia crucible, was altered by coulometric titration. The compound was in contact with the electrolyte, permitting direct exchange of oxygen ions. For measurements above 1073 K, the oxide was contained in a magnesia crucible placed inside a closed silica tube. The oxygen potential in the gas phase above the 123 compound was controlled and measured by a solid-state cell based on yttria-stabilized zirconia, which served both as a pump and sensor. Pure oxygen at a pressure of 1.01 × 105 Pa was used as the reference electrode. The oxygen pressure over the sample was varied from 10-1 to 105 Pa. The oxygen concentrations of the sample equilibrated with pure oxygen at 1.01 × 105 Pa at different temperatures were determined after quenching in liquid nitrogen by hydrogen reduction at 1223 K. The plot of chemical potential of oxygen as a function of oxygen non-stoichiometry shows an inflexion at δ ∼ 0.375 at 873 K. Data at 773 K indicate tendency for phase separation at lower temperatures. The partial enthalpy and entropy of oxygen derived from the temperature dependence of electromotive force (emf ) exhibit variation with composition. The partial enthalpy for °= 0.3, 0.4, and 0.5 also appears to be temperature dependent. The results are discussed in comparison with the data reported in the literature. An expression for the integral free energy of formation of YBa2Cu3O6.5 is evaluated based on measurements reported in the literature. By integration of the partial Gibbs’ energy of oxygen obtained in this study, the variation of integral property with oxygen concentration is obtained at 873 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen potentials of four rare-earth metal – oxygen (RE–O: RE=Gd, Dy, Tb, Er) solid solutions have been measured by equilibration with yttrium – oxygen (Y–O) and titanium – oxygen (Ti–O) solid solutions. Rare-earth metal, yttrium and titanium samples were immersed in calcium-saturated CaCl2 melt at temperatures between 1093 and 1233 K. Homogeneous oxygen potential was established in the metallic samples through the fused salt, which contains some dissolved CaO. The metallic samples were analyzed for oxygen after quenching. The oxygen potentials of RE–O solid solutions were determined using either Y–O or Ti–O solid solution as the reference. This method enabled reliable measurement of extremely low oxygen potentials at high temperature (circa pO2=10−48 atm at 1173 K). It was found that the oxygen affinity of the metals decreases in the order: Y>Er>Dy>Tb>Gd>Ti. Values for the standard Gibbs energy of solution of oxygen in RE metals obtained in this study, permit assessment of the extent of deoxidation that can be achieved with various purification techniques. It may be possible to achieve an oxygen level of 10 mass ppm using an electrochemical deoxidation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For some new applications of metals in functional devices, metals of high purity are required. In recent years, many high-purity metals have been produced commercially for use in electronics, but the demand for ultra-high-purity metals is increasing rapidly because of more stringent specifications for materials used in high-performance information devices.