936 resultados para Oscillatory Singular Integrals


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems that have a singular measure. Using the block maxima approach described in Faranda et al. [2011] we show that, numerically, the Extreme Value distribution for these maps can be associated to the Generalised Extreme Value family where the parameters scale with the information dimension. The numerical analysis are performed on a few low dimensional maps. For the middle third Cantor set and the Sierpinskij triangle obtained using Iterated Function Systems, experimental parameters show a very good agreement with the theoretical values. For strange attractors like Lozi and H\`enon maps a slower convergence to the Generalised Extreme Value distribution is observed. Even in presence of large statistics the observed convergence is slower if compared with the maps which have an absolute continuous invariant measure. Nevertheless and within the uncertainty computed range, the results are in good agreement with the theoretical estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper extends the singular value decomposition to a path of matricesE(t). An analytic singular value decomposition of a path of matricesE(t) is an analytic path of factorizationsE(t)=X(t)S(t)Y(t) T whereX(t) andY(t) are orthogonal andS(t) is diagonal. To maintain differentiability the diagonal entries ofS(t) are allowed to be either positive or negative and to appear in any order. This paper investigates existence and uniqueness of analytic SVD's and develops an algorithm for computing them. We show that a real analytic pathE(t) always admits a real analytic SVD, a full-rank, smooth pathE(t) with distinct singular values admits a smooth SVD. We derive a differential equation for the left factor, develop Euler-like and extrapolated Euler-like numerical methods for approximating an analytic SVD and prove that the Euler-like method converges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-point difference scheme recently proposed in Ref. 1 for the numerical solution of a class of linear, singularly perturbed, two-point boundary-value problems is investigated. The scheme is derived from a first-order approximation to the original problem with a small deviating argument. It is shown here that, in the limit, as the deviating argument tends to zero, the difference scheme converges to a one-sided approximation to the original singularly perturbed equation in conservation form. The limiting scheme is shown to be stable on any uniform grid. Therefore, no advantage arises from using the deviating argument, and the most accurate and efficient results are obtained with the deviation at its zero limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solution of the pole assignment problem by feedback in singular systems is parameterized and conditions are given which guarantee the regularity and maximal degree of the closed loop pencil. A robustness measure is defined, and numerical procedures are described for selecting the free parameters in the feedback to give optimal robustness.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we describe recent progress on the design, analysis and implementation of hybrid numerical-asymptotic boundary integral methods for boundary value problems for the Helmholtz equation that model time harmonic acoustic wave scattering in domains exterior to impenetrable obstacles. These hybrid methods combine conventional piecewise polynomial approximations with high-frequency asymptotics to build basis functions suitable for representing the oscillatory solutions. They have the potential to solve scattering problems accurately in a computation time that is (almost) independent of frequency and this has been realized for many model problems. The design and analysis of this class of methods requires new results on the analysis and numerical analysis of highly oscillatory boundary integral operators and on the high-frequency asymptotics of scattering problems. The implementation requires the development of appropriate quadrature rules for highly oscillatory integrals. This article contains a historical account of the development of this currently very active field, a detailed account of recent progress and, in addition, a number of original research results on the design, analysis and implementation of these methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the feasibility of using the singular vector technique to create initial condition perturbations for short-range ensemble prediction systems (SREPS) focussing on predictability of severe local storms and in particular deep convection. For this a new final time semi-norm based on the convective available potential energy (CAPE) is introduced. We compare singular vectors using the CAPE-norm with SVs using the more common total energy (TE) norm for a 2-week summer period in 2007, which includes a case of mesoscale extreme rainfall in the south west of Finland. The CAPE singular vectors perturb the CAPE field by increasing the specific humidity and temperature of the parcel and increase the lapse rate above the parcel in the lower troposphere consistent with physical considerations. The CAPE-SVs are situated in the lower troposphere. This in contrast to TE-SVs with short optimization times which predominantly remain in the high troposphere. By examining the time evolution of the CAPE singular values we observe that the convective event in the south west of Finland is clearly associated with high CAPE singular values.