946 resultados para Orthogonal polynomials in two variables
Resumo:
Classical theories have successfully provided an explanation for convection in a liquid layer heated from below without evaporation. However, these theories are inadequate to account for the convective instabilities in an evaporating liquid layer, especially in the case when it is cooled from below. In the present paper, we study the onset of Marangoni convection in a liquid layer being overlain by a vapor layer.A new two-sided model is put forward instead of the one-sided model in previous studies. Marangoni-Bénard instabilities in evaporating liquid thin layers are investigated with a linear instability analysis. We define a new evaporation Biot number, which is different from that in previous studies and discuss the influences of reference evaporating velocity and evaporation Biot number on the vapor-liquid system. At the end, we explain why the instability occurs even when an evaporating liquid layer is cooled from below.
Resumo:
The thermovibrational instability of Rayleigh-Marangoni-Benard convection in a two-layer system under the high-frequency vibration has been investigated by linear instability analysis in the present paper. General equations for the description of the convective flow and within this framework, the generalized Boussinesq approximation are formulated. These equations are dealt with using the averaging method. The theoretical analysis results show that the high-frequency thermovibrations can change the Marangoni-Benard convection instabilities as well as the oscillatory gaps of the Rayleigh-Marangoni-Benard convection in two-layer liquid systems. It is found that vertical high-frequency vibrations can delay convective instability of this system, and damp the convective flow down. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
In 1999, the space experiments on the Marangoni convection and thermocapillary convection in a system of two immiscible liquid layers in microgravity environment were conducted on board the Chinese scientific satellite SJ-5. A new system of two-layer liquids such as FC-70 liquid and paraffin was used successfully, with the paraffin melted in the space. Two different test-cells are subjected to a temperature gradient perpendicular or parallel to the interface to study the Marangoni convection and thermocapillary convection, respectively. The experimental data obtained in the first Chinese space experiment of fluid are presented. Two-dimensional numerical simulations of thermocapillary convections are carried out using SIMPLEC method A reasonable agreement between the experimental investigation and the numerical results is obtained.
Resumo:
The coherent structure in two-dimensional mixing layers is simulated numerically with the compressible Navier-Stokes equations. The Navier-Stokes equations are discretized with high-order accurate upwind compact schemes. The process of development of flow structure is presented: loss of stability, development of Kelvin-Helmholtz instability, rolling up and pairing. The time and space development of the plane mixing layer and influence of the compressibility are investigated.
Resumo:
The results of experiments in open channels and closed pipelines show two kinds of patterns for the vertical distribution of particle concentration (i.e., pattern I and pattern II). The former shows a pattern of maximum concentration at some location above the bottom and the downward decay of the concentration below the location. The latter always shows an increase of the particle concentration downward over the whole vertical, with the maximum value at the bottom. Many investigations were made on the pattern II, but few were made on pattern I. In this paper, a particle velocity distribution function is first obtained in the equilibrium state or in dilute steady state for the particle in two-phase flows, then a theoretical model for the particle concentration distribution is derived from the kinetic theory. More attention is paid to the predictions of the concentration distribution of pattern I and comparisons of the present model are made with the data measured by means of laser doppler anemometry (LDA). Very good agreements are obtained between the measured and calculated results.
Resumo:
The problem of thermophoretic deposition of small particles onto cold surfaces is studied in two-dimensional and axisymmetric flow fields. The particle concentration equation is solved numerically together with the momentum and energy equations in the laminar boundary layer with variable density effect included. It is shown explicitly to what extent the particle concentration and deposition rate at the wall are influenced by the density variation effect for external flow past bodies. The general numerical procedure is given for two-dimensional and axisymmetric cases and is illustrated with examples of thermophoretic deposition of particles in flows past a cold cylinder and a sphere.
Resumo:
In this paper we introduce four scenario Cluster based Lagrangian Decomposition (CLD) procedures for obtaining strong lower bounds to the (optimal) solution value of two-stage stochastic mixed 0-1 problems. At each iteration of the Lagrangian based procedures, the traditional aim consists of obtaining the solution value of the corresponding Lagrangian dual via solving scenario submodels once the nonanticipativity constraints have been dualized. Instead of considering a splitting variable representation over the set of scenarios, we propose to decompose the model into a set of scenario clusters. We compare the computational performance of the four Lagrange multiplier updating procedures, namely the Subgradient Method, the Volume Algorithm, the Progressive Hedging Algorithm and the Dynamic Constrained Cutting Plane scheme for different numbers of scenario clusters and different dimensions of the original problem. Our computational experience shows that the CLD bound and its computational effort depend on the number of scenario clusters to consider. In any case, our results show that the CLD procedures outperform the traditional LD scheme for single scenarios both in the quality of the bounds and computational effort. All the procedures have been implemented in a C++ experimental code. A broad computational experience is reported on a test of randomly generated instances by using the MIP solvers COIN-OR and CPLEX for the auxiliary mixed 0-1 cluster submodels, this last solver within the open source engine COIN-OR. We also give computational evidence of the model tightening effect that the preprocessing techniques, cut generation and appending and parallel computing tools have in stochastic integer optimization. Finally, we have observed that the plain use of both solvers does not provide the optimal solution of the instances included in the testbed with which we have experimented but for two toy instances in affordable elapsed time. On the other hand the proposed procedures provide strong lower bounds (or the same solution value) in a considerably shorter elapsed time for the quasi-optimal solution obtained by other means for the original stochastic problem.
Resumo:
Thirty largemouth bass ( Micropterus salmoide s Lacepde) were implanted with radio tags in late October 2003 in two coves of Lake Seminole, Georgia, and tracked over a 24-hour period about every 10 days to determine their response to herbicide application. After five weeks of tracking, hydrilla ( Hydrilla verticillata Royle) in each cove was treated in early December 2003 with dipotassium salt of endothall (Aquathol K; 7-oxabicyclo [2.2.1] heptane-2,3-dicarboxylic acid) at a rate of 3.5 ppm. Largemouth bass were tracked during application and tracking continued for three months post treatment to assess effects of herbicide treatment on activity patterns. The treatment in Desser Cove successfully reduced hydrilla in approximately half the cove. However, the treatment in Peacock Lake completely eliminated all submersed aquatic vegetation (SAV) by April 2004. Movement and activity centers remained similar between treatment periods in Desser Cove, but increased after treatment in Peacock Lake. Depth occupied by telemetered fish decreased after Aquathol K treatment in both coves. In general, behavior of largemouth bass did not change appreciably during treatment, and only minor changes were observed in the posttreatment period in Peacock Lake, where all SAV was eliminated. Fish showed little attraction to or movement away from treatment areas, and fish migration from either cove was nil after treatment. Application of Aquathol K and subsequent reduction of SAV had little effect on largemouth bass behavior or movement. (PDF has 8 pages.)
Resumo:
Angler creel surveys and economic impact models were used to evaluate potential expansion of aquatic vegetation in Lakes Murray and Moultrie, South Carolina. (PDF contains 4 pages.)
Resumo:
The convective instabilities in two or more superposed layers heated from below were studied extensively by many scientists due to several interfacial phenomena in nature and crystal growth application. Most works of them were performed mainly on the instability behaviors induced only by buoyancy force, especially on the oscillatory behavior at onset of convection (see Gershuni et. Al.(1982), Renardy et. Al. (1985,2000), Rasenat et. Al. (1989), and Colinet et. Al.(1994)) . But the unstable situations of multi-layer liquid convection will become more complicated and interesting while considering at the same time the buoyancy effect combined with thermocapillary effect. This is the case in the gravity reduced field or thin liquid layer where the thermocapillary effect is as important as buoyancy effect. The objective of this study was to investigate theoretically the interaction between Rayleigh-Bénard instability and pure Marangoni instability in a two-layer system, and more attention focus on the oscillatory instability both at the onset of convection and with increasing supercriticality. Oscillatory behavious of Rayleigh-Marangoni-Bénard convective instability (R-M-B instability) and flow patterns are presented in the two-layer system of Silicon Oil (10cSt) over Fluorinert (FC70) for a larger various range of two-layer depth ratios (Hr=Hupper/Hdown) from 0.2 to 5.0. Both linear instability analysis and 2D numerical simulation (A=L/H=10) show that the instability of the system depends strongly on the depth ratio of two-layer liquids. The oscillatory instability regime at the onset of R-M-B convection are found theoretically in different regions of layer thickness ratio for different two-layer depth H=12,6,4,3mm. The neutral stability curve of the system displaces to right while we consider the Marangoni effect at the interface in comparison with the Rayleigh-Bénard instability of the system without the Marangoni effect (Ma=0). The numerical results show different regimes of the developing of convection in the two-layer system for different thickness ratios and some differences at the onset of pure Marangoni convection and the onset of Rayleigh-Bénard convections in two-layer liquids. Both traveling wave and standing wave were detected in the oscillatory instability regime due to the competition between Rayleigh-Bénard instability and Marangoni effect. The mechanism of the standing wave formation in the system is presented numerically in this paper. The oscillating standing wave results in the competition of the intermediate Marangoni cell and the Rayleigh convective rolls. In the two-layer system of 47v2 silicone oil over water, a transition form the steady instability to the oscillatory instability of the Rayleigh-Marangoni-Bénard Convection was found numerically above the onset of convection for ε=0.9 and Hr=0.5. We propose that this oscillatory mechanism is possible to explain the experimental observation of Degen et. Al.(1998). Experimental work in comparison with our theoretical findings on the two-layer Rayleigh-Marangoni-Bénard convection with thinner depth for H<6mm will be carried out in the near future, and more attention will be paid to new oscillatory instability regimes possible in the influence of thermocapillary effects on the competition of two-layer liquids
Resumo:
Shear banding characterization of Zr64.13Cu15.75Ni10.12Al10 and Zr65Cu15Ni10Al10 bulk metallic glasses (BMGs) with significant difference in inherent plasticity and quite similar chemical composition was studied by depth sensitive macroindentaion tests with conical indenter. Well-developed shear band pattern can be found for both BMGs after indentation. Distinct difference in the shear band spacing, scale of plastic deformation region and the shear band branching in the two BMGs account for the different plasticity.
Resumo:
When designing deep ocean structures, it is necessary to estimate the effects of internal waves on the platform and auxiliary parts such as tension leg, riser and mooring lines. Up to now, only a few studies are concerned with the internal wave velocity fields. By using the most representative two-layer model, we have analyzed the behavior of velocity field induced by interfacial wave in the present paper. We find that there may exist velocity shear of fluid particles in the upper and lower layers so that any structures in the ocean are subjected to shear force nearby the interface. In the meantime, the magnitude of velocity for long internal wave appears spatially uniform in the respective layer although they still decay exponentially. Finally, the temporal variation for Stokes and solitary waves are shown to be of periodical and pulse type.