971 resultados para Orphan nuclear receptor


Relevância:

40.00% 40.00%

Publicador:

Resumo:

p300 and its family member, CREB-binding protein (CBP), function as key transcriptional coactivators by virtue of their interaction with the activated forms of certain transcription factors. In a search for additional cellular targets of p300/CBP, a protein-protein cloning strategy, surprisingly identified SRC-1, a coactivator involved in nuclear hormone receptor transcriptional activity, as a p300/CBP interactive protein. p300 and SRC-1 interact, specifically, in vitro and they also form complexes in vivo. Moreover, we show that SRC-1 encodes a new member of the basic helix-loop-helix-PAS domain family and that it physically interacts with the retinoic acid receptor in response to hormone binding. Together, these results implicate p300 as a component of the retinoic acid signaling pathway, operating, in part, through specific interaction with a nuclear hormone receptor coactivator, SRC-1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In search of proteins which interact with activated steroid hormone receptors, we screened a human liver lambda gt11 expression library with the glucocorticoid receptor. We identified and cloned a cDNA sequence of 1322 bp that encodes a protein of 274 aa. This protein consists predominantly of hydrophilic amino acids and contains a putative bipartite nuclear localization signal. The in vitro translated receptor-associating protein runs in SDS/polyacrylamide gels with an apparent molecular mass of 46 kDa. By use of the bacterially expressed fusion protein with glutathione S-transferase we have found that interaction is not limited to the glucocorticoid receptor but included other nuclear receptors--most notably, the estrogen and thyroid receptors. Binding also occurs with the glucocorticoid receptor complexed with the antiglucocorticoid RU 38486, with the estrogen receptor complexed with the antiestrogen 4-hydroxytamoxifen or ICI 164,384, and even with receptors not complexed with ligand. Association with steroid hormone receptors depends on prior receptor activation--i.e., release from heat shock proteins. The sequence identified here appears to be a general partner protein for nuclear hormone receptors, with the gene being expressed in a variety of mammalian tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nuclear hormone receptors are transcription factors that require multiple protein-protein interactions to regulate the expression of their target genes. Using the yeast two-hybrid system, we identified a protein, thyroid hormone receptor uncoupling protein (TRUP), that specifically interacts with a region of the human thyroid hormone receptor (TR) consisting of the hinge region and the N-terminal portion of the ligand binding domain in a hormone-independent manner. Interestingly, TRUP inhibits transactivation by TR and the retinoic acid receptor but has no effect on the estrogen receptor or the retinoid X receptor in mammalian cells. We also demonstrate that TRUP exerts its action on TR and retinoic acid receptor by interfering with their abilities to interact with their DNA. TRUP represents a type of regulatory protein that modulates the transcriptional activity of a subclass of the nuclear hormone receptor superfamily by preventing interaction with their genomic response elements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nuclear import system is highly conserved among eukaryotes. Here we report the effects of a conditional mutation in SRP1, which encodes a Saccharomyces cerevisiae homolog of the vertebrate nuclear import receptor importin. Importin was isolated as a factor required for the initial targeting step of a nuclear import substrate to the nuclear envelope in a mammalian in vitro assay. We show that yeast Srp1 is similarly required for protein import. In addition, Srp1 is also required for the execution of mitosis: we demonstrate that cells containing a conditional mutation of SRP1 arrest with a G2/M phenotype in a manner analogous to classic cdc mutants. This defect may be due to the failure of the mutant to degrade the mitotic cyclin Clb2 and other proteins required for mitosis. The requirement of a nuclear import receptor for cell cycle-regulated proteolysis implies that import of cell cycle regulators into the nucleus is critical for cell cycle progression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The NR4A1-3 (Nur77, NURR1 and NOR-1) subfamily of nuclear hormone receptors (NRs) has been implicated in Parkinson's disease, schizophrenia, manic depression, atherogenesis, Alzheimer's disease, rheumatoid arthritis, cancer and apoptosis. This has driven investigations into the mechanism of action, and the identification of small molecule regulators, that may provide the platform for pharmaceutical and therapeutic exploitation. Recently, we found that the purine antimetabolite 6-Mercaptopurine (6-MP), which is widely used as an anti-neoplastic and anti-inflammatory drug, modulated the NR4A1-3 subfamily. Interestingly, the agonist-mediated activation did not involve modulation of primary coactivators' (e.g. p300 and SRC-2/GRIP-1) activity and/or recruitment. However, the role of the subsequently recruited coactivators, for example CARM-1 and TRAP220, in 6-MP-mediated activation of the NR4A1-3 subfamily remains obscure. In this study we demonstrate that 6-MP modulates the activity of the coactivator TRAP220 in a dose-dependent manner. Moreover, we demonstrate that TRAP220 potentiates NOR-1-mediated transactivation, and interacts with the NR4A1-3 subgroup in an AF-1-dependent manner in a cellular context. The region of TRAP220 that mediated 6-MP activation and NR4A interaction was delimited to amino acids 1-800, and operates independently of the critical PKC and PKA phosphorylation sites. Interestingly, TRAP220 expression does not increase the relative induction by 6-MP, however the absolute level of NOR-1-mediated trans-activation is increased. This study demonstrates that 6-MP modulates the activity of the NR4A subgroup, and the coactivator TRAP220.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fibroblast growth factor (FGF) receptors (FGFRs) signal to modulate diverse cellular functions, including epithelial cell morphogenesis. In epithelial cells, E-cadherin plays a key role in cell-cell adhesion, and its function can be regulated through endocytic trafficking. In this study, we investigated the location, trafficking, and function of FGFR1 and E-cadherin and report a novel mechanism, based on endocytic trafficking, for the coregulation of E-cadherin and signaling from FGFR1. FGF induces the internalization of surface FGFR1 and surface E-cadherin, followed by nuclear translocation of FGFR1. The internalization of both proteins is regulated by common endocytic machinery, resulting in cointernalization of FGFR1 and E-cadherin into early endosomes. By blocking endocytosis, we show that this is a requisite, initial step for the nuclear translocation of FGFR1. Overexpression of E-cadherin blocks both the coendocytosis of E-cadherin and FGFR1, the nuclear translocation of FGFR1 and FGF-induced signaling to the mitogen-activated protein kinase pathway. Furthermore, stabilization of surface adhesive E-cadherin, by overexpressing p120(ctn), also blocks internalization and nuclear translocation of FGFR1. These data reveal that conjoint endocytosis and trafficking is a novel mechanism for the coregulation of E-cadherin and FGFR1 during cell signaling and morphogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although the key components of the cellular nuclear transport machinery have largely been characterized through extensive efforts in recent years, in vivo measurements of the kinetics of nuclear protein import/export are patently few. The present study applies the approach of FRAP (fluorescence recovery after photobleaching) to examine the nucleocytoplasmic flux of a novel human VDRB1 (vitamin D receptor B I) isoform in living cells. Through an N-terminal extension containing a consensus nuclear targeting sequence, VDRB1 is capable of localizing in nuclear speckles adjacent to SC-35 (35 kDa splicing component)containing speckles as well as in the nucleoplasm, dependent on ligand. Investigation of VDRB1 nucleocytoplasmic transport using FRAP indicates for the first time that the VDRB1 has a serum-modulated, active nuclear-import mechanism. There is no evidence of an efficient, active export mechanism for VDRB1, probably as a result of nuclear retention. VDRB1 nuclear import in the absence of serum occurred more rapidly and to a greater extent to nuclear speckles compared with import to other nuclear sites. This preferential transport from the cytoplasm to and accumulation within nuclear speckles is consistent with the idea that the latter represent dynamic centres of VDRB1 interaction with other nuclear proteins. The results are consistent with the existence of specialized pathways to target proteins to nuclear subdomains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Recent evidence indicates that maternal endothelial dysfunction in preeclampsia results from increased soluble Fms-like tyrosine kinase-1 (sFlt-1), a circulating antiangiogenic protein. Factors responsible for excessive production of sFlt-1 in preeclampsia have not been identified. We tested the hypothesis that angiotensin II type 1 (AT1) receptor activating autoantibodies, which occur in women with preeclampsia, contribute to increased production of sFlt-1. IgG from women with preeclampsia stimulates the synthesis and secretion of sFlt-1 via AT1 receptor activation in pregnant mice, human placental villous explants, and human trophoblast cells. Using FK506 or short-interfering RNA targeted to the calcineurin catalytic subunit mRNA, we determined that calcineurin/nuclear factor of activated T-cells signaling functions downstream of the AT1 receptor to induce sFlt-1 synthesis and secretion by AT1-receptor activating autoantibodies. AT1-receptor activating autoantibody–induced sFlt-1 secretion resulted in inhibition of endothelial cell migration and capillary tube formation in vitro. Overall, our studies demonstrate that an autoantibody from women with preeclampsia induces sFlt-1 production via angiotensin receptor activation and downstream calcineurin/nuclear factor of activated T-cells signaling. These autoantibodies represent potentially important targets for diagnosis and therapeutic intervention.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Enhancer regions and transcription start sites of estrogen-target regulated genes are connected by means of Estrogen Receptor long-range chromatin interactions. Yet, the complete molecular mechanisms controlling the transcriptional output of engaged enhancers and subsequent activation of coding genes remain elusive. Here, we report that CTCF binding to enhancer RNAs is enriched when breast cancer cells are stimulated with estrogen. CTCF binding to enhancer regions results in modulation of estrogen-induced gene transcription by preventing Estrogen Receptor chromatin binding and by hindering the formation of additional enhancer-promoter ER looping. Furthermore, the depletion of CTCF facilitates the expression of target genes associated with cell division and increases the rate of breast cancer cell proliferation. We have also uncovered a genomic network connecting loci enriched in cell cycle regulator genes to nuclear lamina that mediates the CTCF function. The nuclear lamina and chromatin interactions are regulated by estrogen-ER. We have observed that the chromatin loops formed when cells are treated with estrogen establish contacts with the nuclear lamina. Once there, the portion of CTCF associated with the nuclear lamina interacts with enhancer regions, limiting the formation of ER loops and the induction of genes present in the loop. Collectively, our results reveal an important, unanticipated interplay between CTCF and nuclear lamina to control the transcription of ER target genes, which has great implications in the rate of growth of breast cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic acquired resistance (SAR) is a broad-spectrum resistance in plants that involves the upregulation of a battery of pathogenesis-related (PR) genes. NPR1 is a key regulator in the signal transduction pathway that leads to SAR. Mutations in NPR1 result in a failure to induce PR genes in systemic tissues and a heightened susceptibility to pathogen infection, whereas overexpression of the NPR1 protein leads to increased induction of the PR genes and enhanced disease resistance. We analyzed the subcellular localization of NPR1 to gain insight into the mechanism by which this protein regulates SAR. An NPR1–green fluorescent protein fusion protein, which functions the same as the endogenous NPR1 protein, was shown to accumulate in the nucleus in response to activators of SAR. To control the nuclear transport of NPR1, we made a fusion of NPR1 with the glucocorticoid receptor hormone binding domain. Using this steroid-inducible system, we clearly demonstrate that nuclear localization of NPR1 is essential for its activity in inducing PR genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer is the second most common cause of cancer-related deaths in Western males. Current diagnostic, prognostic and treatment approaches are not ideal and advanced metastatic prostate cancer is incurable. There is an urgent need for improved adjunctive therapies and markers for this disease. GPCRs are likely to play a significant role in the initiation and progression of prostate cancer. Over the last decade, it has emerged that G protein coupled receptors (GPCRs) are likely to function as homodimers and heterodimers. Heterodimerisation between GPCRs can result in the formation of novel pharmacological receptors with altered functional outcomes, and a number of GPCR heterodimers have been implicated in the pathogenesis of human disease. Importantly, novel GPCR heterodimers represent potential new targets for the development of more specific therapeutic drugs. Ghrelin is a 28 amino acid peptide hormone which has a unique n-octanoic acid post-translational modification. Ghrelin has a number of important physiological roles, including roles in appetite regulation and the stimulation of growth hormone release. The ghrelin receptor is the growth hormone secretagogue receptor type 1a, GHS-R1a, a seven transmembrane domain GPCR, and GHS-R1b is a C-terminally truncated isoform of the ghrelin receptor, consisting of five transmembrane domains. Growing evidence suggests that ghrelin and the ghrelin receptor isoforms, GHS-R1a and GHS-R1b, may have a role in the progression of a number of cancers, including prostate cancer. Previous studies by our research group have shown that the truncated ghrelin receptor isoform, GHS-R1b, is not expressed in normal prostate, however, it is expressed in prostate cancer. The altered expression of this truncated isoform may reflect a difference between a normal and cancerous state. A number of mutant GPCRs have been shown to regulate the function of their corresponding wild-type receptors. Therefore, we investigated the potential role of interactions between GHS-R1a and GHS-R1b, which are co-expressed in prostate cancer and aimed to investigate the function of this potentially new pharmacological receptor. In 2005, obestatin, a 23 amino acid C-terminally amidated peptide derived from preproghrelin was identified and was described as opposing the stimulating effects of ghrelin on appetite and food intake. GPR39, an orphan GPCR which is closely related to the ghrelin receptor, was identified as the endogenous receptor for obestatin. Recently, however, the ability of obestatin to oppose the effects of ghrelin on appetite and food intake has been questioned, and furthermore, it appears that GPR39 may in fact not be the obestatin receptor. The role of GPR39 in the prostate is of interest, however, as it is a zinc receptor. Zinc has a unique role in the biology of the prostate, where it is normally accumulated at high levels, and zinc accumulation is altered in the development of prostate malignancy. Ghrelin and zinc have important roles in prostate cancer and dimerisation of their receptors may have novel roles in malignant prostate cells. The aim of the current study, therefore, was to demonstrate the formation of GHS-R1a/GHS-R1b and GHS-R1a/GPR39 heterodimers and to investigate potential functions of these heterodimers in prostate cancer cell lines. To demonstrate dimerisation we first employed a classical co-immunoprecipitation technique. Using cells co-overexpressing FLAG- and Myc- tagged GHS-R1a, GHS-R1b and GPR39, we were able to co-immunoprecipitate these receptors. Significantly, however, the receptors formed high molecular weight aggregates. A number of questions have been raised over the propensity of GPCRs to aggregate during co-immunoprecipitation as a result of their hydrophobic nature and this may be misinterpreted as receptor dimerisation. As we observed significant receptor aggregation in this study, we used additional methods to confirm the specificity of these putative GPCR interactions. We used two different resonance energy transfer (RET) methods; bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET), to investigate interactions between the ghrelin receptor isoforms and GPR39. RET is the transfer of energy from a donor fluorophore to an acceptor fluorophore when they are in close proximity, and RET methods are, therefore, applicable to the observation of specific protein-protein interactions. Extensive studies using the second generation bioluminescence resonance energy transfer (BRET2) technology were performed, however, a number of technical limitations were observed. The substrate used during BRET2 studies, coelenterazine 400a, has a low quantum yield and rapid signal decay. This study highlighted the requirement for the expression of donor and acceptor tagged receptors at high levels so that a BRET ratio can be determined. After performing a number of BRET2 experimental controls, our BRET2 data did not fit the predicted results for a specific interaction between these receptors. The interactions that we observed may in fact represent ‘bystander BRET’ resulting from high levels of expression, forcing the donor and acceptor into close proximity. Our FRET studies employed two different FRET techniques, acceptor photobleaching FRET and sensitised emission FRET measured by flow cytometry. We were unable to observe any significant FRET, or FRET values that were likely to result from specific receptor dimerisation between GHS-R1a, GHS-R1b and GPR39. While we were unable to conclusively demonstrate direct dimerisation between GHS-R1a, GHS-R1b and GPR39 using several methods, our findings do not exclude the possibility that these receptors interact. We aimed to investigate if co-expression of combinations of these receptors had functional effects in prostate cancers cells. It has previously been demonstrated that ghrelin stimulates cell proliferation in prostate cancer cell lines, through ERK1/2 activation, and GPR39 can stimulate ERK1/2 signalling in response to zinc treatments. Additionally, both GHS-R1a and GPR39 display a high level of constitutive signalling and these constitutively active receptors can attenuate apoptosis when overexpressed individually in some cell types. We, therefore, investigated ERK1/2 and AKT signalling and cell survival in prostate cancer the potential modulation of these functions by dimerisation between GHS-R1a, GHS-R1b and GPR39. Expression of these receptors in the PC-3 prostate cancer cell line, either alone or in combination, did not alter constitutive ERK1/2 or AKT signalling, basal apoptosis or tunicamycin-stimulated apoptosis, compared to controls. In summary, the potential interactions between the ghrelin receptor isoforms, GHS-R1a and GHS-R1b, and the related zinc receptor, GPR39, and the potential for functional outcomes in prostate cancer were investigated using a number of independent methods. We did not definitively demonstrate the formation of these dimers using a number of state of the art methods to directly demonstrate receptor-receptor interactions. We investigated a number of potential functions of GPR39 and GHS-R1a in the prostate and did not observe altered function in response to co-expression of these receptors. The technical questions raised by this study highlight the requirement for the application of extensive controls when using current methods for the demonstration of GPCR dimerisation. Similar findings in this field reflect the current controversy surrounding the investigation of GPCR dimerisation. Although GHS-R1a/GHS-R1b or GHS-R1a/GPR39 heterodimerisation was not clearly demonstrated, this study provides a basis for future investigations of these receptors in prostate cancer. Additionally, the results presented in this study and growing evidence in the literature highlight the requirement for an extensive understanding of the experimental method and the performance of a range of controls to avoid the spurious interpretation of data gained from artificial expression systems. The future development of more robust techniques for investigating GPCR dimerisation is clearly required and will enable us to elucidate whether GHS-R1a, GHS-R1b and GPR39 form physiologically relevant dimers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our understanding of the mechanisms of action of GH and its receptor, the GHR, has advanced significantly in the last decade and has provided some important surprises. It is now clear that the GH-GHR axis activates a number of inter-related signalling pathways, not all of which are dependent on the intracellular tyrosine kinase, JAK2 as originally postulated. JAK2-independent pathways, mediated via the Src family kinases, together with a number of negative regulators of GH signalling and emerging cross-talk mechanisms with other growth factor receptors, provide a complex array of mechanisms that are capable of fine-tuning responses to GH in a cell context dependent manner. Additionally, it is also now clear that GH and the GHR can translocate to the nucleus of target cells and initiate, as yet not well defined, nuclear responses. Continued emphasis on elucidation of these complex mechanisms is critical to provide further insights into the diverse physiological and pathophysiological effects of GH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the discovery of the first receptor tyrosine kinase (RTK) proteins in the late 1970s and early 1980s, many scientists have explored the functions of these important cell signaling molecules. The finding that these proteins are often deregulated or mutated in diseases such as cancers and diabetes, together with their potential as clinical therapeutic targets, has further highlighted the necessity for understanding the signaling functions of these important proteins. The mechanisms of RTK regulation and function have been recently reviewed by Lemmon & Schlessinger (2010) but in this review we instead focus on the results of several recent studies that show receptor tyrosine kinases can function from subcellular localisations, including in particular the nucleus, in addition to their classical plasma membrane location. Nuclear localisation of receptor tyrosine kinases has been demonstrated to be important for normal cell function but is also believed to contribute to the pathogenesis of several human diseases.