870 resultados para Optimal location
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2010
Resumo:
Scheduling, job shop, uncertainty, mixed (disjunctive) graph, stability analysis
Resumo:
Multiproduct plants, Dynamic Optimization, Mixed Integer Linear/Non-Linear Programming, Scheduling
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2009
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Wirtschaftswiss., Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2014
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2014
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2015
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2015
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Masterarbeit, 2016
Resumo:
This paper assesses empirically the importance of size discrimination and disaggregate data for deciding where to locate a start-up concern. We compare three econometric specifications using Catalan data: a multinomial logit with 4 and 41 alternatives (provinces and comarques, respectively) in which firm size is the main covariate; a conditional logit with 4 and 41 alternatives including attributes of the sites as well as size-site interactions; and a Poisson model on the comarques and the full spatial choice set (942 municipalities) with site-specific variables. Our results suggest that if these two issues are ignored, conclusions may be misleading. We provide evidence that large and small firms behave differently and conclude that Catalan firms tend to choose between comarques rather than between municipalities. Moreover, labour-intensive firms seem more likely to be located in the city of Barcelona. Keywords: Catalonia, industrial location, multinomial response model. JEL: C250, E30, R00, R12
Resumo:
This paper aims at assessing the optimal behavior of a firm facing stochastic costs of production. In an imperfectly competitive setting, we evaluate to what extent a firm may decide to locate part of its production in other markets different from which it is actually settled. This decision is taken in a stochastic environment. Portfolio theory is used to derive the optimal solution for the intertemporal profit maximization problem. In such a framework, splitting production between different locations may be optimal when a firm is able to charge different prices in the different local markets.