311 resultados para Ontogenetic
Resumo:
The rate at which different components of reproductive isolation accumulate with divergence time between species has only been studied in a limited, but growing, number of species. We measured premating isolation and hybrid inviability at four different ontogenetic stages from zygotes to adults in interspecific hybrids of 26 pairs of African cichlid species, spanning the entire East African haplochromine radiation. We then used multiple relaxed molecular clock calibrations to translate genetic distances into absolute ages to compare evolutionary rates of different components of reproductive isolation. We find that premating isolation accumulates fast initially but then changes little with increasing genetic distance between species. In contrast, postmating isolation between closely related species is negligible but then accumulates rapidly, resulting in complete hybrid inviability after 4.4/8.5/18.4 million years (my). Thus, the rate at which complete intrinsic incompatibilities arise in this system is orders of magnitude lower than rates of speciation within individual lake radiations. Together these results suggest divergent ecological adaptations may prevent populations from interbreeding and help maintain cichlid species diversity, which may be vulnerable to environmental degradation. By quantifying the capacity to produce viable hybrids between allopatric, distantly related lineages our results also provide an upper divergence time limit for the "hybrid swarm origin" model of adaptive radiation.
Resumo:
Chondrostoma nasus is a cyprinid fish with highly specialized, ecologically and geographically distinct, ontogenetic trophic niches. Nase population numbers across their Swiss range have shown massive declines and many localized extinctions. Here we integrate data from different genetic markers with phenotypic and demographic data to survey patterns of neutral and adaptive genetic diversity in all extant (and one extinct) Swiss nase populations, with the aim to delineate intraspecific conservation units (CUs) and to inform future population management strategies. We discovered two major genetically and geographically distinct population groupings. The first population grouping comprises nase inhabiting rivers flowing into Lake Constance; the second comprises nase populations from Rhine drainages below Lake Constance. Within these clusters there is generally limited genetic differentiation among populations. Genomic outlier scans based on 256–377 polymorphic AFLP loci revealed little evidence of local adaptation both within and among population clusters, with the exception of one candidate locus identified in scans involving the inbred Schanzengraben population. However, significant phenotypic differentiation in body shape between certain populations suggests a need for more intensive future studies of local adaptation. Our data strongly suggests that the two major population groups should be treated as distinct CUs, with any supplemental stocking and reintroductions sourced only from within the range of the CU concerned.
Resumo:
The Spec genes serve as molecular markers for examining the ontogeny of the aboral ectoderm lineage of sea urchin embryos. These genes are activated at late-cleavage stage only in cells contributing to the aboral ectoderm of Strongylocentrotus purpuratus and encode 14,000-17,000 Da calcium-binding proteins. A comparative analysis was undertaken to better understand the mechanisms underlying the activation and function of the Spec genes by investigating Spec homologues from Lytechinus pictus, a distantly related sea urchin. Spec antibodies cross-reacted with 34,000 Da proteins in L. pictus embryos that displayed a similar ontogenetic pattern to that of Spec proteins. One cDNA clone, LpS1, was isolated by hybridization to a synthetic oligonucleotide corresponding to a calcium-binding domain or EF-hand. The LpS1 mRNA has developmental properties similar to those of the Spec mRNAs. LpS1 encodes a 34,000 Da protein containing eight EF-hand domains, which share structural homology with the Spec EF-hands; however, little else in the protein sequence is conserved, implying that calcium-binding is important for Spec protein function. Genomic DNA blot analysis showed two LpS1 genes, LpS1$\alpha$ and LpS1$\beta$, in L. pictus. Partial gene structures for both LpS1$\alpha$ and $\beta$ were constructed based on genomic clones isolated from an L. pictus genomic library. These revealed internal duplications of the LpS1 genes that accounted for the eight EF-hand domains in the LpS1 proteins. Sequencing analysis showed there was little in common among the 5$\sp\prime$-flanking regions of the LpS1 and Spec genes except for the presence of a binding site for the transcription factor USF.^ A sea urchin gene-transfer expression system showed that 762 base pairs (bp) of 5$\sp\prime$-flanking DNA from the LpS1$\beta$ gene were sufficient for correct temporal and spatial expression of reporter genes in sea urchin embryos. Deletions at the 5$\sp\prime$ end to 511, 368, or 108bp resulted in a 3-4 fold decrease in chloramphenicol acetyltransferase (CAT) activity and disrupted the restricted activation of the lac Z gene in aboral ectoderm cells.^ A full-length Spec1 protein and a truncated LpS1 protein were induced and partially purified from an in vitro expression system. (Abstract shortened with permission of author.) ^
Resumo:
Cimpian & Salomon (C&S) present promising steps towards understanding the cognitive underpinnings of adult essentialism. However, their approach is less convincing regarding ontogenetic and evolutionary aspects. In contrast to C&S's claim, the so-called inherence heuristic, though perhaps vital in adult reasoning, seems an implausible candidate for the developmental and evolutionary foundations of psychological essentialism. A more plausible candidate is kind-based object individuation that already embodies essentialist modes of thinking and that is present in infants and nonhuman primates.
Resumo:
The electric organ (EO) of weakly electric mormyrids consists of flat, disk-shaped electrocytes with distinct anterior and posterior faces. There are multiple species-characteristic patterns in the geometry of the electrocytes and their innervation. To further correlate electric organ discharge (EOD) with EO anatomy, we examined four species of the mormyrid genus Campylomormyrus possessing clearly distinct EODs. In C. compressirostris, C. numenius, and C. tshokwe, all of which display biphasic EODs, the posterior face of the electrocytes forms evaginations merging to a stalk system receiving the innervation. In C. tamandua that emits a triphasic EOD, the small stalks of the electrocyte penetrate the electrocyte anteriorly before merging on the anterior side to receive the innervation. Additional differences in electrocyte anatomy among the former three species with the same EO geometry could be associated with further characteristics of their EODs. Furthermore, in C. numenius, ontogenetic changes in EO anatomy correlate with profound changes in the EOD. In the juvenile the anterior face of the electrocyte is smooth, whereas in the adult it exhibits pronounced surface foldings. This anatomical difference, together with disparities in the degree of stalk furcation, probably contributes to the about 12 times longer EOD in the adult.
Resumo:
As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate that single pairwise comparisons may lead to false conclusions regarding the effects of domestication on defensive and possibly other traits.
Resumo:
Ontogenetic variation in 4 trace element ((88)Sr, (137)Ba, (24)Mg, (23)Na) concentrations and their ratios to Ca were measured in statoliths of the jumbo flying squid Dosidicus gigas off the Exclusive Economic Zone of Chilean and Peruvian waters using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The element compositions of statoliths showed no significant differences between females and males. All of the elements in different growth zones showed significant variations, except for Mg. Sr:Ca and Mg:Ca were good indicators for distinguishing squid from autumn and winter spawning seasons. Sr:Ca and Ba:Ca distribution patterns in statoliths confirmed that paralarvae and juvenile squid inhabit surface waters, while subadult squid migrate into deeper waters. An increasing Sr: Ca ratio of subadult squid could be explained by declining temperature gradients from northern to southern sampling locations, although no significant Sr: Ca differences were observed (p > 0.05). Mg:Ca ratios decreased progressively from the nucleus to the peripheral zone, which might be correlated with statolith growth rates. Na:Ca ratios slightly declined from paralarvae to the subadult phase. Quantitative relationships between statolith trace elements and environmental conditions under different growth stages are needed to improve our understanding of life history of D. gigas.
Resumo:
Five permanent cell lines were developed from Xiphophorus maculatus, X. helleri, and their hybrids using three tissue sources, including adults and embryos of different stages. To evaluate cell line gene expression for retention of either tissue-of-origin-specific or ontogenetic stage-specific characters, the activity distribution of 44 enzyme loci was determined in 11 X. maculatus tissues, and the developmental genetics of 17 enzyme loci was charted in X. helleri and in helleri x maculatus hybrids using starch gel electrophoresis. In the process, eight new loci were discovered and characterized for Xiphophorus.^ No Xiphophorus cell line showed retention of tissue-of-origin-specific or ontogenetic stage-specific enzyme gene expressional traits. Instead, gene expression was similar among the cell lines. One enzyme, adenosine deaminase (ADA) was an exception. Two adult-origin cell lines expressed ADA, whereas, three cell lines derived independently from embryos did not. ADA('-) expression of Xiphophorus embryo-derived cell lines may represent retention of an embryonic gene expressional trait. In one cell line (T(,3)) derived from 13 pooled interspecific hybrid (F(,2)) embryos, shifts with time were observed at enzyme loci polymorphic between the two species. This suggested shifts in ratios of cells of different genotypes in the population rather than unstable gene expression in one dominant cell type.^ Verification of this hypothesis was attempted by cloning the culture--seeking clones having different genetic signatures. The large number of loci electrophoretically polymorphic between the two species and whose alleles segregated independently into the 13 progeny from which this culture originated almost guaranteed the presence of different genetic signatures (lineages) in T(,3).^ Seven lineages of cells were found within T(,3), each expressing genotypes at some loci not characteristic of the expression of the culture-as-a-whole, supporting the hypothesis tested. Quantitative studies of ADA expression in the whole culture (ADA('-)) and in clones of these seven lineages suggested the predominance in T(,3) of ADA deficient cell lineages, although moderate to high ADA output clones also occurred. Thus, T(,3) has the potential to shift phenotypes from ADA('-) to ADA('+) by simply changing proportions of its constituent cell types, demonstrating that such shifts can occur in any cell culture containing cells of mixed expressional characteristics.^
Resumo:
Five of the six sites drilled during Leg 77 of the Deep Sea Drilling Project yielded Cretaceous sediments. Two of these sites, 535 and 540, form a composite section that spans the upper Berriasian through most of the Cenomanian. Olive black marly limestones in this interval yield relatively rich, well-preserved nannofossil assemblages that allow biostratigraphic subdivision of the sequence. This composite section provides important information on the Early Cretaceous history of the Gulf of Mexico, as well as additional information on tropical Lower Cretaceous nannofossil assemblages. The post-Cenomanian nannofossil (and sedimentary) record is limited to a thin, condensed section of Santonian through lower Maestrichtian pelagic sediments at one site (538) and is absent or represented by redeposited material at the other sites. Two new genera, Perchnielsenella and Darwinilithus, are described. Two new taxa, Darwinilithus pentarhethum and Lithraphidites acutum ssp. eccentricum, are described; and two new combinations, Rhagodiscus reightonensis and Perchnielsenella stradneri, are propose.
Resumo:
The paleoecology of Cretaceous planktic foraminifera during the Late Cenomanian to Coniacian period (~95-86 Ma) remains controversial since much of the tropical marine record is preserved as chalk and limestone with uncertain geochemical overprints. Here we present delta13C and delta18O data from sieve size fractions of monospecific samples of exceptionally well preserved planktic foraminifera recovered during Ocean Drilling Program Leg 207 (Demerara Rise, western tropical Atlantic). Our results suggest that all species studied (Hedbergella delrioensis, Heterohelix globulosa, Marginotruncana sinuosa, Whiteinella baltica) grew primarily in surface waters and did not change their depth habitat substantially during their life cycle. Comparison of size-related ontogenetic trends in delta13C in Cretaceous and modern foraminifera further suggests that detection of dinoflagellate photosymbiosis using delta13C is confounded by physiological effects during the early stages of foraminifer growth, raising doubts about previous interpretations of photosymbiosis in small foraminifera species. We propose that obligate photosymbiosis involving dinoflagellates may not have evolved until the Campanian or Maastrichtian since our survey of Cenomanian-Coniacian species does not find the delta18O and delta13C size-related trends observed in modern foraminifer-dinoflagellate symbioses.
Resumo:
Marine brachyuran and anomuran crustaceans are completely absent from the extremely cold (-1.8 °C) Antarctic continental shelf, but caridean shrimps are abundant. This has at least partly been attributed to low capacities for magnesium excretion in brachyuran and anomuran lithodid crabs ([Mg2+]HL = 20-50 mmol/L) compared to caridean shrimp species ([Mg2+]HL = 5-12 mmol/L). Magnesium has an anaesthetizing effect and reduces cold tolerance and activity of adult brachyuran crabs. We investigated whether the capacity for magnesium regulation is a factor that influences temperature-dependent activity of early ontogenetic stages of the Sub-Antarctic lithodid crab Paralomis granulosa. Ion composition (Na+, Mg2+, Ca2+, Cl-, [SO4]2-) was measured in haemolymph withdrawn from larval stages, the first and second juvenile instars (crabs I and II) and adult males and females. Magnesium excretion improved during ontogeny, but haemolymph sulphate concentration was lowest in the zoeal stages. Neither haemolymph magnesium concentrations nor Ca2+:Mg2+ ratios paralleled activity levels of the life stages. Long-term (3 week) cold exposure of crab I to 1 °C caused a significant rise of haemolymph sulphate concentration and a decrease in magnesium and calcium concentrations compared to control temperature (9 °C). Spontaneous swimming activity of the zoeal stages was determined at 1, 4 and 9 °C in natural sea water (NSW, [Mg2+] = 51 mmol/L) and in sea water enriched with magnesium (NSW + Mg2+, [Mg2+] = 97 mmol/L). It declined significantly with temperature but only insignificantly with increased magnesium concentration. Spontaneous velocities were low, reflecting the demersal life style of the zoeae. Heart rate, scaphognathite beat rate and forced swimming activity (maxilliped beat rate, zoea I) or antennule beat rate (crab I) were investigated in response to acute temperature change (9, 6, 3, 1, -1 °C) in NSW or NSW + Mg2+. High magnesium concentration reduced heart rates in both stages. The temperature-frequency curve of the maxilliped beat (maximum: 9.6 beats/s at 6.6 °C in NSW) of zoea I was depressed and shifted towards warmer temperatures by 2 °C in NSW + Mg2+, but antennule beat rate of crab I was not affected. Magnesium may therefore influence cold tolerance of highly active larvae, but it remains questionable whether the slow-moving lithodid crabs with demersal larvae would benefit from an enhanced magnesium excretion in nature.
Resumo:
We determined the stable oxygen and carbon isotopic composition of live (Rose Bengal stained) tests belonging to different size classes of two benthic foraminiferal species from the Pakistan continental margin. Samples were taken at 2 sites, with water depth of about 135 and 275 m, corresponding to the upper boundary and upper part of the core region of the oxygen minimum zone (OMZ). For Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata, delta13C and delta18O values increased significantly with increasing test size. In the case of U. ex gr. U. semiornata, delta13C increased linearly by about 0.105 per mil for each 100-µm increment in test size, whereas delta18O increased by 0.02 to 0.06 per mil per 100 µm increment. For B. aff. B. dilatata the relationship between test size and stable isotopic composition is better described by logarithmic equations. A strong positive linear correlation is observed between delta18O and delta13C values of both taxa, with a constant ratio of delta18O and delta13C values close to 2:1. This suggests that the strong ontogenetic effect is mainly caused by kinetic isotope fractionation during CO2 uptake. Our data underline the necessity to base longer delta18O and delta13C isotope records derived from benthic foraminifera on size windows of 100 µm or less. This is already common practice in down-core isotopic studies of planktonic foraminifera.