949 resultados para Oil pollution of water


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of the protein atoms with the surrounding water oxygen atoms has been computed for 392 protein chains from 369 protein structures belonging to 90% non-homologous high resolution (<= 1.5 angstrom) protein Structures with a crystallographic R-factor <= 20%. The percentage composition of the polar atoms is found to be 36.3%. An average of 82.55% of water oxygen atoms are found to be in the primary hydration shell and 15.12% in the secondary hydration shell. The average Percentage of interactions of water oxygen atoms with the polar atoms of the main chain and side chain are 54% and 46%. respectively. The interaction of the acidic residues, aspartate and glutamate, with the water oxygen atoms is more when compared to that of the other residues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wettability gradient surfaces play a significant role in control and manipulation of liquid drops. The present work deals with the analysis of water drops impacting onto the junction line between hydrophobic texture and hydrophilic smooth portions of a dual-textured substrate made using stainless steel material. The hydrophobic textured portion of the substrate comprised of unidirectional parallel groove-like and pillar-like structures of uniform dimensions. A high-speed video camera recorded the spreading and receding dynamics of impacting drops. The drop impact dynamics during the early inertia driven impact regime remains unaffected by the dual-texture feature of the substrate. A larger retraction speed of drop liquid observed on the hydrophobic portion of the substrate during the impact of low velocity drops makes the drop liquid on the higher wettability portion to advance further (secondary drop spreading). The net horizontal drop velocity towards the hydrophilic portion of the dual-textured substrate decreases with increasing drop impact velocity. The available experimental results suggest that the movement of bulk drop liquid away from the impact point during drop impact on the dual-textured substrate is larger for the impact of low inertia drops. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generation of raw materials for dry powder inhalers by different size reduction methods can be expected to influence physical and chemical properties of the powders. This can cause differences in particle size, size distribution, shape, crystalline properties, surface texture and energy. These physical properties of powders influence the behaviour of particles before and after inhalation. Materials with an amorphous surface have different surface energy compared to materials with crystalline surface. This can affect the adhesion and cohesion of particles. Changes in the surface nature of the drug particles results in a change in product performance. By stabilization of the raw materials the amorphous surfaces are converted into crystalline surfaces. The primary aim of the study was to investigate the influence of the surface properties of the inhalation particles on the quality of the product. The quality of the inhalation product is evaluated by measuring the fine particle dose (FPD). FDP is the total dose of particles with aerodynamic diameters smaller than 5,0 μm. The secondary aim of this study was to achieve the target level of the FPD and the stability of the FPD. This study was also used to evaluate the importance of the stabilization of the inhalation powders. The study included manufacturing and analysing drug substance 200 μg/dose inhalation powder batches using non-stabilized or stabilized raw materials. The inhaler formulation consisted of micronized drug substance, lactose <100μm and micronized lactose <10μm. The inhaler device was Easyhaler®. Stabilization of the raw materials was done in different relative humidity, temperature and time. Surface properties of the raw materials were studied by dynamic vapour sorption, scanning electron microscopy and three-point nitrogen adsorption technique. Particle size was studied by laser diffraction particle size analyzer. Aerodynamic particle size distribution from inhalers was measured by new generation impactor. Stabilization of all three raw materials was successful. A clear difference between nonstabilized and stabilized raw materials was achieved for drug substance and lactose <10μm. However for lactose <100μm the difference wasn’t as clear as wanted. The surface of the non-stabilized drug substance was more irregular and the particles had more roughness on the surface compared to the stabilized drug substances particles surface. The surface of the stabilized drug particles was more regular and smoother than non-stabilized. Even though a good difference between stabilized and non-stabilized raw materials was achieved, a clear evidence of the effect of the surface properties of the inhalation particles on the quality of the product was not observed. Stabilization of the raw materials didn’t lead to a higher FPD. Possible explanations for the unexpected result might be too rough conditions in the stabilization of the drug substance or smaller than wanted difference in the degree of stabilization of the main component of the product <100μm. Despite positive effects on the quality of the product were not seen there appears to be some evidence that stabilized drug substance results in smaller particle size of dry powder inhalers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An exact solution is derived for a boundary-value problem for Laplace's equation which is a generalization of the one occurring in the course of solution of the problem of diffraction of surface water waves by a nearly vertical submerged barrier. The method of solution involves the use of complex function theory, the Schwarz reflection principle, and reduction to a system of two uncoupled Riemann-Hilbert problems. Known results, representing the reflection and transmission coefficients of the water wave problem involving a nearly vertical barrier, are derived in terms of the shape function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nearly one fourth of new medicinal molecules are biopharmaceutical (protein, antibody or nucleic acid derivative) based. However, the administration of these compounds is not always that straightforward due to the fragile nature of aforementioned domains in GI-tract. In addition, these molecules often exhibit poor bioavailability when administered orally. As a result, parenteral administration is commonly preferred. In addition, shelf-life of these molecules in aqueous environments is poor, unless stored in low temperatures. Another approach is to bring these molecules to anhydrous form via lyophilization resulting in enhanced stability during storage. Proteins cannot most commonly be freeze dried by themselves so some kind of excipients are nearly always necessary. Disaccharides are commonly utilized excipients in freeze-dried formulations since they provide a rigid glassy matrix to maintain the native conformation of the protein domain. They also act as "sink"-agents, which basically mean that they can absorb some moisture from the environment and still help to protect the API itself to retain its activity and therefore offer a way to robust formulation. The aim of the present study was to investigate how four amorphous disaccharides (cellobiose, melibiose, sucrose and trehalose) behave when they are brought to different relative humidity levels. At first, solutions of each disaccharide were prepared, filled into scintillation vials and freeze dried. Initial information on how the moisture induced transformations take place, the lyophilized amorphous disaccharide cakes were placed in vacuum desiccators containing different relative humidity levels for defined period, after which selected analyzing methods were utilized to further examine the occurred transformations. Affinity to crystallization, water sorption of the disaccharides, the effect of moisture on glass transition and crystallization temperature were studied. In addition FT-IR microscopy was utilized to map the moisture distribution on a piece of lyophilized cake. Observations made during the experiments backed up the data mentioned in a previous study: melibiose and trehalose were shown to be superior over sucrose and cellobiose what comes to the ability to withstand elevated humidity and temperature, and to avoid crystallization with pharmaceutically relevant moisture contents. The difference was made evident with every utilized analyzing method. In addition, melibiose showed interesting anomalies during DVS runs, which were absent with other amorphous disaccharides. Particularly fascinating was the observation made with polarized light microscope, which revealed a possible small-scale crystallization that cannot be observed with XRPD. As a result, a suggestion can safely be made that a robust formulation is most likely obtained by utilizing either melibiose or trehalose as a stabilizing agent for biopharmaceutical freeze-dried formulations. On the other hand, more experiments should be conducted to obtain more accurate information on why these disaccharides have better tolerance for elevating humidities than others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compute the entropy and transport properties of water in the hydration layer of dipalmitoylphosphatidylcholine bilayer by using a recently developed theoretical scheme two-phase thermodynamic model, termed as 2PT method; S.-T. Lin et al., J. Chem. Phys. 119, 11792 (2003)] based on the translational and rotational velocity autocorrelation functions and their power spectra. The weights of translational and rotational power spectra shift from higher to lower frequency as one goes from the bilayer interface to the bulk. Water molecules near the bilayer head groups have substantially lower entropy (48.36 J/mol/K) than water molecules in the intermediate region (51.36 J/mol/K), which have again lower entropy than the molecules (60.52 J/mol/K) in bulk. Thus, the entropic contribution to the free energy change (T Delta S) of transferring an interface water molecule to the bulk is 3.65 kJ/mol and of transferring intermediate water to the bulk is 2.75 kJ/mol at 300 K, which is to be compared with 6.03 kJ/mol for melting of ice at 273 K. The translational diffusion of water in the vicinity of the head groups is found to be in a subdiffusive regime and the rotational diffusion constant increases going away from the interface. This behavior is supported by the slower reorientational relaxation of the dipole vector and OH bond vector of interfacial water. The ratio of reorientational relaxation time for Legendre polynomials of order 1 and 2 is approximately 2 for interface, intermediate, and bulk water, indicating the presence of jump dynamics in these water molecules. (C) 2010 American Institute of Physics. doi:10.1063/1.3494115]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a modified Green's function technique the two well-known basic problems of scattering of surface water waves by vertical barriers are reduced to the problem of solving a pair of uncoupled integral equations involving the “jump” and “sum” of the limiting values of the velocity potential on the two sides of the barriers in each case. These integral equations are then solved, in closed form, by the aid of an integral transform technique involving a general trigonometric kernel as applicable to the problems associated with a radiation condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Important issues of water and thermal history affecting ion transport in a representative plastic crystalline lithium salt electrolyte: succinonitrile (SN)-lithium perchlorate (LiClO4) are discussed here. Ionic conductivity of electrolytes with high lithium salt amounts (similar to 1 M) in SN at a particular temperature is known to be influenced both by the trans-gauche isomerism and ion association (solvation), the two most important intrinsic parameters of the plastic solvent. In the present study both water and thermal history influence SN and result in enhancement of ionic conductivity of 1 M LiClO4-SN electrolyte. Systematic observations reveal that the presence of water in varying amounts promote ion-pair dissociation in the electrolyte. While trace amounts (approximate to 1-15 ppm) do not affect the trans-gauche isomerism of SN, the presence of water in large amounts (approximate to 5500 ppm) submerges the plasticity of SN. Subjugating the electrolyte to different thermal protocol resulted in enhancement of trans concentration only. This is an interesting observation as it demonstrates a simple and effective procedure involving utilization of an optimized set of external parameters to decouple solvation from trans-gauche isomerism. Observations from the ionic conductivity of various samples were accounted by changes in signature isomer and ion-association bands in the mid-IR regime and also from plastic to normal crystal transition temperature peak obtained from thermal studies. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly (methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO3 particles followed by core removal with ethylene-diaminetetraacetic add (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments and computer simulations demonstrate that water spontaneously fills the hydrophobic cavity of a carbon nanotube. To gain a quantitative thermodynamic understanding of this phenomenon, we use the recently developed two phase thermodynamics method to compute translational and rotational entropies of confined water molecules inside single-walled carbon nanotubes and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rotational entropy. The confined water is in equilibrium with the bulk water and the Helmholtz free energy per water molecule of confined water is the same as that in the bulk within the accuracy of the simulation results. A comparison of translational and rotational spectra of water molecules confined in carbon nanotubes with that of bulk water shows significant shifts in the positions of the spectral peaks that are directly related to the tube radius. (C) 2011 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the adsorption of dioxygen at a clean Ni(110) surface gives rise to two O(1s) features at 531 and 530 eV assigned to O-(a) and O2-(a) type species respectively, coadsorption of dioxygen and water mixtures result in the additional formation of hydroxyl species characterized by an O(1s) peak at 532.3 eV. The latter is attributed to the oxygen induced dissociation of water via a low energy pathway involving the O-(a)-type species. The proportions of the O-(a) and the hydroxyl species are greater for small O-2/H2O ratios and lower temperatures (120 K). With increase in temperature, the relative surface concentrations of the O-(a) and the hydroxyl species decrease while there is an increase in the concentration of the oxidic O2-(a) species. Thus, the surface concentrations of both the hydroxyl and the O2-(a) species depend critically on the presence of O- type species. Above 300K the surface chemistry in the main involves the conversion of O- to O2- species via the hydroxyl species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic conversion ATP + AMP -> 2ADP by the enzyme adenylate kinase (ADK) involves the binding of one ATP. molecule to the LID domain and one AMP molecule to the NMP domain. The latter is followed by a. phosphate transfer and then the release of two ADP molecules. We have computed a novel two-dimensional configurational free energy surface (2DCFES), with one reaction coordinate each for the LID and the NMP domain motions, while considering explicit water interactions. Our computed 2DCFES clearly reveals the existence of a stable half-open half-closed (HOHC) intermediate stale of the enzyme. Cycling of the enzyme through the HOHC state reduces the conformational free energy barrier for. the reaction by about 20 kJ/mol. We find that the stability of the HOHC state (missed in all earlier studies with implicit solvent model) is largely because of the increase of specific interactions of the polar amino acid side chains with water, particularly with the arginine and the histidine residues. Free energy surface of the LID domain is rather rugged, which can conveniently slow down LID's conformational motion, thus facilitating a new substrate capture after the product release in the catalytic cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have synthesised and determined the solution conformation and X-ray crystal structure of the octapeptide Ac-Delta Phe(1)-Val(2)-Delta Phe(3)-Phe(4)-Ala(5)-Val(6)-Delta Phe(7)-Gly(8)-OCH3 (Delta Phe = alpha,beta-dehydrophenylalanine) containing three Delta Phe residues as conformation constraining residues. In the solid state, the peptide folds into (i) an N-terminal (3)10(R)-helical pentapeptide segment, (ii) a middle non-helical segment, and (iii) a C-terminal incipient (3)10(L)-helical segment. The results of H-1 NMR data also suggest that a similar multiple-turn conformation for the peptide is largely maintained in solution. Though the C-terminal helix is incipient, the overall conformation of the octapeptide matches well with the conformation of the hairpins reported. Comparison of the pi-turn seen in the octapeptide molecule with those observed in proteins at the C-terminal end of helixes shows the structural similarity among them. A water molecule mediates the 5 --> 2 hydrogen bond in the pi-turn region. This is the first example of a water-inserted pi-turn in oligopeptides reported so far. Comparison between the present octapeptide and another (3)10(R)-helical dehydro nonapeptide Boc-Val-Delta Phe-Phe-Ala-Phe-Delta Phe-Val-Delta Phe-Gly-OCH3 solved by us recently, demonstrates the possible sequence-dependent conformational variations in alpha,beta-dehydrophenylalanine-containing oligopeptides.