965 resultados para Oil fields
Resumo:
Active learning approaches reduce the annotation cost required by traditional supervised approaches to reach the same effectiveness by actively selecting informative instances during the learning phase. However, effectiveness and robustness of the learnt models are influenced by a number of factors. In this paper we investigate the factors that affect the effectiveness, more specifically in terms of stability and robustness, of active learning models built using conditional random fields (CRFs) for information extraction applications. Stability, defined as a small variation of performance when small variation of the training data or a small variation of the parameters occur, is a major issue for machine learning models, but even more so in the active learning framework which aims to minimise the amount of training data required. The factors we investigate are a) the choice of incremental vs. standard active learning, b) the feature set used as a representation of the text (i.e., morphological features, syntactic features, or semantic features) and c) Gaussian prior variance as one of the important CRFs parameters. Our empirical findings show that incremental learning and the Gaussian prior variance lead to more stable and robust models across iterations. Our study also demonstrates that orthographical, morphological and contextual features as a group of basic features play an important role in learning effective models across all iterations.
Resumo:
Hydraulic conductivity (K) fields are used to parameterize groundwater flow and transport models. Numerical simulations require a detailed representation of the K field, synthesized to interpolate between available data. Several recent studies introduced high-resolution K data (HRK) at the Macro Dispersion Experiment (MADE) site, and used ground-penetrating radar (GPR) to delineate the main structural features of the aquifer. This paper describes a statistical analysis of these data, and the implications for K field modeling in alluvial aquifers. Two striking observations have emerged from this analysis. The first is that a simple fractional difference filter can have a profound effect on data histograms, organizing non-Gaussian ln K data into a coherent distribution. The second is that using GPR facies allows us to reproduce the significantly non-Gaussian shape seen in real HRK data profiles, using a simulated Gaussian ln K field in each facies. This illuminates a current controversy in the literature, between those who favor Gaussian ln K models, and those who observe non-Gaussian ln K fields. Both camps are correct, but at different scales.
Resumo:
The upstream oil and gas industry has been contending with massive data sets and monolithic files for many years, but “Big Data” is a relatively new concept that has the potential to significantly re-shape the industry. Despite the impressive amount of value that is being realized by Big Data technologies in other parts of the marketplace, however, much of the data collected within the oil and gas sector tends to be discarded, ignored, or analyzed in a very cursory way. This viewpoint examines existing data management practices in the upstream oil and gas industry, and compares them to practices and philosophies that have emerged in organizations that are leading the way in Big Data. The comparison shows that, in companies that are widely considered to be leaders in Big Data analytics, data is regarded as a valuable asset—but this is usually not true within the oil and gas industry insofar as data is frequently regarded there as descriptive information about a physical asset rather than something that is valuable in and of itself. The paper then discusses how the industry could potentially extract more value from data, and concludes with a series of policy-related questions to this end.
Resumo:
The research introduces a promising technique for monitoring the degradation status of oil-paper insulation systems of large power transformers in an online mode and innovative enhancements are also made on the existing offline measurements, which afford more direct understanding of the insulation degradation process. Further, these techniques benefit from a quick measurement owing to the chirp waveform signal application. The techniques are improved and developed on the basis of measuring the impedance response of insulation systems. The feasibility and validity of the techniques was supported by the extensive simulation works as well as experimental investigations.
Resumo:
We show that the parallax motion resulting from non-nodal rotation in panorama capture can be exploited for light field construction from commodity hardware. Automated panoramic image capture typically seeks to rotate a camera exactly about its nodal point, for which no parallax motion is observed. This can be difficult or impossible to achieve due to limitations of the mounting or optical systems, and consequently a wide range of captured panoramas suffer from parallax between images. We show that by capturing such imagery over a regular grid of camera poses, then appropriately transforming the captured imagery to a common parameterisation, a light field can be constructed. The resulting four-dimensional image encodes scene geometry as well as texture, allowing an increasingly rich range of light field processing techniques to be applied. Employing an Ocular Robotics REV25 camera pointing system, we demonstrate light field capture,refocusing and low-light image enhancement.
Resumo:
A series of macro–mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesized. The materials were calcined at 723 K and were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy (UV–visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100 °C), which makes it possible to synthesize such materials on industrial scale. The performance–morphology relationship of as-synthesized TiO2/Al2O3 nanocomposites was investigated by the photocatalytic degradation of a model organic pollutant under UV irradiation. The samples with 1D (fibrous) morphology exhibited superior catalytic performance than the samples without, such as titania microspheres.
Resumo:
A 60-year-old male experienced a marked unilateral myopic shift of 20 D following attempted removal of intravitreal heavy silicone oil (HSO) used in the treatment of inferior proliferative vitreous retinopathy following retinal detachment. Examination revealed HSO adherent to the corneal endothelium forming a convex interface with the aqueous, obscuring the entire pupil, which required surgical intervention to restore visual acuity. This case highlights the potential ocular complications associated with silicone oil migration into the anterior chamber, which include corneal endothelial decompensation and a significant increase in myopia.
Resumo:
Product reviews are the foremost source of information for customers and manufacturers to help them make appropriate purchasing and production decisions. Natural language data is typically very sparse; the most common words are those that do not carry a lot of semantic content, and occurrences of any particular content-bearing word are rare, while co-occurrences of these words are rarer. Mining product aspects, along with corresponding opinions, is essential for Aspect-Based Opinion Mining (ABOM) as a result of the e-commerce revolution. Therefore, the need for automatic mining of reviews has reached a peak. In this work, we deal with ABOM as sequence labelling problem and propose a supervised extraction method to identify product aspects and corresponding opinions. We use Conditional Random Fields (CRFs) to solve the extraction problem and propose a feature function to enhance accuracy. The proposed method is evaluated using two different datasets. We also evaluate the effectiveness of feature function and the optimisation through multiple experiments.
Resumo:
South Africa has an electrical transmission grid of over 25 000 km of overhead power lines with voltages of 132 kV to 765 kV. The grid has been largely designed and built by the power utility, Eskom. This book embodies the planning philosophies, design principles and construction practices of Eskom. It is the culmination of decades of thought, study, research and the practical experience of many overhead power line engineers and researchers. The book covers the main aspects of overhead power line design and construction, from electrical first principles, system planning, insulation co-ordination (including live line working), mechanical design through to environmental impact management and power line communications. The content emphasises the need for close interaction between all technical disciplines involved and the importance of optimising designs for economy and performance. Additional challenges in South Africa are the relatively high altitude of the interior plateau (1 000 m to 1 700 m above sea level), severe lightning in some areas and long transmission distances. The book explains how these factors are accommodated in modern designs. Other advanced work covered includes the use and understanding of polymeric insulators, the judicious reduction of phase-to-phase spacings and the adoption of guyed structures.
Resumo:
This study explores the potential use of empty fruit bunch (EFB) residues from palm oil processing residues, as an alternative feedstock for microbial oil production. EFB is a readily available, lignocellulosic biomass that provides cheaper substrates for oil production in comparison to the use of pure sugars. In this study, potential oleaginous microorganisms were selected based on a multi-criteria analysis (MCA) framework which utilised Analytical Hierarchy Process (AHP) with Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) aided by Geometrical Analysis for Interactive Aid (GAIA). The MCA framework was used to evaluate several strains of microalgae (Chlorella protothecoides and Chlorella zofingiensis), yeasts (Cryptococcus albidus and Rhodotorula mucilaginosa) and fungi (Aspergillus oryzae and Mucor plumbeus) on glucose, xylose and glycerol. Based on the results of PROMETHEE rankings and GAIA plane, fungal strains A. oryzae and M. plumbeus and yeast strain R. mucilaginosa showed great promise for oil production from lignocellulosic hydrolysates. The study further cultivated A. oryzae, M. plumbeus and R. mucilaginosa on EFB hydrolysates for oil production. EFB was pretreated with dilute sulfuric acid, followed by enzymatic saccharification of solid residue. Hydrolysates tested in this study are detoxified liquid hydrolysates (LH) and enzymatic hydrolysate (EH).
Resumo:
Statistical comparison of oil samples is an integral part of oil spill identification, which deals with the process of linking an oil spill with its source of origin. In current practice, a frequentist hypothesis test is often used to evaluate evidence in support of a match between a spill and a source sample. As frequentist tests are only able to evaluate evidence against a hypothesis but not in support of it, we argue that this leads to unsound statistical reasoning. Moreover, currently only verbal conclusions on a very coarse scale can be made about the match between two samples, whereas a finer quantitative assessment would often be preferred. To address these issues, we propose a Bayesian predictive approach for evaluating the similarity between the chemical compositions of two oil samples. We derive the underlying statistical model from some basic assumptions on modeling assays in analytical chemistry, and to further facilitate and improve numerical evaluations, we develop analytical expressions for the key elements of Bayesian inference for this model. The approach is illustrated with both simulated and real data and is shown to have appealing properties in comparison with both standard frequentist and Bayesian approaches
Resumo:
The behavior of simetryn and thiobencarb in flooded rice soil was investigated in a 2-year study. The concentrations of simetryn and thiobencarb were in the hundreds of μg kg-1 in the top soil layer (0-5 cm) and became significantly lower in tens of μg kg-1 in the deeper soil layers (5-10 and 10-15 cm). The half-lives of the two herbicides were also shorter (36 and 17 days for simetryn and thiobencarb, respectively) in the top soil layer, as they were most affected by environmental conditions, compared with corresponding values of 82 and 69 days in the 5-10 cm soil layer. Simetryn concentration was stable, while thiobencarb's half-life was 165 days in the 10-15 cm layer. About 35% of the applied mass of simetryn and thiobencarb were found in the rice soil compartment.
Resumo:
In this study, we investigated the impact of rainfall on runoff, soil erosion and consequently on the discharge of radioactive cesium in agricultural fields in Fukushima prefecture using a rainfall simulator. Simulated heavy rainfalls (50 mm h-1) generated significant runoff and soil erosion. The average concentration of radioactive cesium (the sum of 134Cs and 137Cs) in the runoff sediments was [similar]3500 Bq kg-1 dry soil, more than double the concentrations measured in the field soils which should be considered in studies using the 137Cs loss to estimate long-term soil erosion. However, the estimated mass of cesium discharged through one runoff event was less than 2% of the cesium inventory in the field. This suggested that cesium discharge via soil erosion is not a significant factor in reducing the radioactivity of contaminated soils in Fukushima prefecture. However, the eroded sediment carrying radioactive cesium will deposit into the river systems and potentially pose a radioactivity risk for aquatic living organisms.