943 resultados para ORGANIC MERCURY COMPOUNDS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Mercury Redox Chemistry in the Negro River Basin, Amazon: The Role of Organic Matter and Solar Light
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conjugated polymers have been subject of great interest in the recent literature from both fundamental point of view and applied science perspective. Among the several types of conjugated polymers used in recent investigations, polythiophene and its derivatives have attracted considerable attention over the past 20 years due to their high mobility and other remarkable solid-state properties. They have potential applications in many fields, such as microelectronic devices, catalysts, organic field-effect transistors, chemical sensors, and biosensors. They have been studied as gas and volatile organic compounds (VOCs) sensors using different principles or transduction techniques, such as optical absorption, conductivity, and capacitance measurements. In this work, we report on the fabrication of gas sensors based on a conducting polymer on an interdigitated gold electrode. We use as active layer of the sensor a polythiophene derivative: poly (3-hexylthiophene) (P3HT) and analyzed its conductivity as response for exposure to dynamic flow of saturated vapors of six VOCs [n-hexane, toluene, chloroform, dichloromethane, methanol, and tetrahydrofuran (THE)]. Different responses were obtained upon exposure to all VOCs, THF gave the higher response while methanol the lower response. The influence of moisture on the measurements was also evaluated. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
A sensitive method based on square wave voltammetry is described for the quantitative determination of elemental sulfur, disulfide and mercaptan in gasoline using a mercury film electrode. These sulfur compounds can be quantified by direct dissolution of gasoline in a supporting electrolyte followed by subsequent voltammetric measurement. The supporting electrolyte is 1.4 mol L-1 sodium acetate and No acetic acid in methanol. Chemical and optimum operational conditions for the formation of the mercury film were analyzed in this study. The values obtained were a 4.3 mu m thickness for the mercury film, a 1000 rpm rotation frequency, -0.9 V applied potential and 600 s depositing time. Voltammetric measurements were obtained using square wave voltammetry with detection limits of the 3.0 x 10(-9), 1.6 x 10(-7) and 4.9 x 10(-7) mol L-1 for elemental sulfur, disulfide and mercaptan, respectively. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The sensitized photolysis of [Ru(NH3)(6)](2+) by the organic dye rhodamine B and biacetyl was studied under conditions in which only the sensitizer absorbs. The reaction products resulting from ammonia aquation and Ru(II) to Ru(III) oxidation are the same for direct and sensitized photolysis. The energy transfer rate constant, calculated from the fluorescence quenching of rhodamine B, is similar to that estimated from the limiting quantum yield of the photosensitized photoaquation of the complex. Both reactions originate from a common reactive low-lying ligand-field (LF) state, which is also responsible for the direct photolysis reactions. This state, which leads directly to photoaquation, seems to have a certain charge transfer to solvent (CTTS) character, which is responsible for the photo-oxidation products. Sensitization is effective with rhodamine B (17 450 cm(-1)) and biacetyl (19 000 cm(-1)), whereas no reaction is observed with neutral red (16 900 cm(-1)). These results show that the excited state responsible for the photochemical reactions lies in the energy range between 16 900 cm(-1) and 17 700 cm(-1) and possesses spin-orbit character.
Resumo:
Fourteen samples of particulate matter and semi-volatile organic compounds were collected during 6 months in the city of Campo Grande, South Mato Grosso State, Brazil. Particle-bound polycyclic aromatic hydrocarbons (PAHs) were collected on Fluoropore PTFE filters and gas-phase PAHs were collected into sorbent tubes with XAD-2 resin. Both types of samples were extracted with a dichloromethane/methanol mixture (4:1 v/v), then the extracts were subjected to gas chromatography-mass spectrometry (GC-MS) analysis. PAHs, oxidized PAH (oxy-PAHs), phenols and methoxyphenols were identified by use of GC retention indices and MS files. The average value obtained for the sum of 15 PAHs was 21.05 ng m(-3) (range: 8.94-62.5 ng m(-3)). The presence of specific tracers and calculations of characteristic ratios (e.g. [Phe]/[Phe] + [Ant]) were used to identify the sources of the emissions of PAHs in the atmospheric samples. Levoglucosan (the anhydride of beta-glucose), retene (1-methyl-7-isopropylphenanthrene) and methoxyphenols (derivatives of syringol and guaiacol) and tracers for wood burning were identified. This study demonstrates that biomass burning from the rural zone is the main source of PAHs and emissions of other substances in the investigated site of Campo Grande. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Gold has been exploited intensively in the Brazilian Amazon during the past 20 years, and the elemental mercury (Hg) used in amalgamating the gold has caused abnormal Hg concentrations in waterways. Since 1986 particular attention has been given to the Madeira River because it is the largest tributary of the Amazon River and gold mining was officially allowed on a 350-km sector of the river. In this paper, samples of sediments from nine lakes located in the Madeira River basin, Rondonia State, Brazil, were analysed for mercury and organic matter. The average Hg content ranged between 33 and 157 ppb, which is about 8-40 times higher than the average value corresponding to 4.4 ppb for rocks occurring in the area (regional background). Significant correlation was found between the Hg content and organic matter in the sediments, indicating its importance on the retention of this heavy metal.
Resumo:
The effect of substitution of [Pd(PPh3)(4)], which is unstable in air, by complexes of the type [MCl2L2] (M = Pd, Pt; L = AsPh3, SbPh3), [PdL4](L = PPh3, AsPh3, SbPh3) and [NiX2(PPh3)(2)] on the syntheses of thioethers, acetylenes and ketones is described.
Resumo:
In this work the influence of two different iron sources, Fe(NO3)(3) and complexed ferrioxalate (FeOx), on the degradation efficiency of 4-chlorophenol (4CP), malachite green, formaldehyde, dichloroacetic acid (DCA) and the commercial products of the herbicides diuron and tebuthiuron was studied. The oxidation of 4CP, DCA, diuron and tebuthiuron shows a strong dependence on the iron source. While the 4CP degradation is favored by the use of Fe(NO3)(3), the degradation of DCA and the herbicides diuron and tebuthiuron is most efficient when ferrioxalate is used. on the other hand, the degradation of malachite green and formaldehyde is not very influenced by the iron source showing only a slight improvement when ferrioxalate is used. In the case of formaldehyde, DCA, diuron and tebuthiuron, despite of the additional carbon introduced by the use of ferrioxalate, higher mineralization percentages were observed, confirming the beneficial effect of ferrioxalate on the degradation of these compounds. The degradation of tebuthiuron was studied in detail using a shallow pond type solar flow reactor of 4.5 L capacity and 4.5 cm solution depth. Solar irradiation of tebuthiuron at a flow rate of 9 L h(-1), in the presence of 10.0 mmol L-1 H2O2 and 1.0 mmol L-1 ferrioxalate resulted in complete conversion of this herbicide and 70% total organic carbon removal. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study focuses on the presence of radon (Rn-222) and volatile organic compounds (VOCs) in soil gases at a gas station located in the city of Rio Claro, Sao Paulo, Brazil, where a fossil fuel leak occurred. The spatial distribution results show a correlation between Rn-222 and VOCs, consistent with the fact that radon gas has a greater chemical affinity with organic phases than with water. This finding demonstrates that the presence of a residual hydrocarbon phase in an aquifer can retain radon, leading to a reduced radon content in the soil gas. The data in this study confirm the results of previous investigations, in which the method used in this study provided a preliminary fingerprint of a contaminated area. Furthermore, the data analysis time is brief, and only simple equipment is required. (C) 2014 Published by Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of organic compounds has been a good option to reduce spending on fertilizers, and gain increased productivity in the cultivation of lettuce. However, given the wide variety of raw materials used in the preparation of organic compounds, studies are needed to evaluate its effects on the release of essential nutrients to plants and on the release of contaminants such as heavy metals. The aim of this study was to evaluate the mineral nutrition and heavy metal contamination of lettuce in soils treated with doses and types of compost. The experiment was conducted in a greenhouse in randomized blocks in factorial scheme 5x4, with five types of organic compounds and four nitrogen levels (0, 35, 70 and 140 kg ha(-1) of N), with four replications. In general, the doses of the compounds were not enough to provide the necessary quantity of nutrients to the lettuce, with the exception of nitrogen. There was no increase in levels of heavy metals in the soil above that allowed by Brazilian legislation. Furthermore, compounds based on manure plus grass, and commercial compound caused increases in Zn concentration in plants at levels above the recommended for consumed.
Resumo:
This work evaluates fluorinated thin films and their composites for sensor development. Composites were produced using 5 µm starch particles and plasma films obtained from organic fluorinated and silicon compounds reactants. Silicon wafers and aluminum trenches were used as substrates. Film thickness, refractive index and chemical structure were also determined. Scanning electron microscopy shows conformal deposition on aluminum trenches. Films deposited on silicon were exposed to vapor of volatile organic compounds and CV curves were obtained. A qualitative model (FemLab 3.2® program) was proposed for the electronic behavior. These environmentally correct films can be used in electronic devices and preferentially reacted to polar compounds. Nonetheless, due to the difficulty in signal recovery, these films are more effective in one-way sensors, in sub-ppm range.