991 resultados para Numerical weather forecasting.
Resumo:
This study has explored the prediction errors of tropical cyclones (TCs) in the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) for the Northern Hemisphere summer period for five recent years. Results for the EPS are contrasted with those for the higher-resolution deterministic forecasts. Various metrics of location and intensity errors are considered and contrasted for verification based on IBTrACS and the numerical weather prediction (NWP) analysis (NWPa). Motivated by the aim of exploring extended TC life cycles, location and intensity measures are introduced based on lower-tropospheric vorticity, which is contrasted with traditional verification metrics. Results show that location errors are almost identical when verified against IBTrACS or the NWPa. However, intensity in the form of the mean sea level pressure (MSLP) minima and 10-m wind speed maxima is significantly underpredicted relative to IBTrACS. Using the NWPa for verification results in much better consistency between the different intensity error metrics and indicates that the lower-tropospheric vorticity provides a good indication of vortex strength, with error results showing similar relationships to those based on MSLP and 10-m wind speeds for the different forecast types. The interannual variation in forecast errors are discussed in relation to changes in the forecast and NWPa system and variations in forecast errors between different ocean basins are discussed in terms of the propagation characteristics of the TCs.
Resumo:
Ocean prediction systems are now able to analyse and predict temperature, salinity and velocity structures within the ocean by assimilating measurements of the ocean’s temperature and salinity into physically based ocean models. Data assimilation combines current estimates of state variables, such as temperature and salinity, from a computational model with measurements of the ocean and atmosphere in order to improve forecasts and reduce uncertainty in the forecast accuracy. Data assimilation generally works well with ocean models away from the equator but has been found to induce vigorous and unrealistic overturning circulations near the equator. A pressure correction method was developed at the University of Reading and the Met Office to control these circulations using ideas from control theory and an understanding of equatorial dynamics. The method has been used for the last 10 years in seasonal forecasting and ocean prediction systems at the Met Office and European Center for Medium-range Weather Forecasting (ECMWF). It has been an important element in recent re-analyses of the ocean heat uptake that mitigates climate change.
Resumo:
With the development of convection-permitting numerical weather prediction the efficient use of high resolution observations in data assimilation is becoming increasingly important. The operational assimilation of these observations, such as Dopplerradar radial winds, is now common, though to avoid violating the assumption of un- correlated observation errors the observation density is severely reduced. To improve the quantity of observations used and the impact that they have on the forecast will require the introduction of the full, potentially correlated, error statistics. In this work, observation error statistics are calculated for the Doppler radar radial winds that are assimilated into the Met Office high resolution UK model using a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-depth study using the diagnostic to estimate both horizontal and along-beam correlated observation errors. By considering the new results obtained it is found that the Doppler radar radial wind error standard deviations are similar to those used operationally and increase as the observation height increases. Surprisingly the estimated observation error correlation length scales are longer than the operational thinning distance. They are dependent on both the height of the observation and on the distance of the observation away from the radar. Further tests show that the long correlations cannot be attributed to the use of superobservations or the background error covariance matrix used in the assimilation. The large horizontal correlation length scales are, however, in part, a result of using a simplified observation operator.
Resumo:
In numerical weather prediction, parameterisations are used to simulate missing physics in the model. These can be due to a lack of scientific understanding or a lack of computing power available to address all the known physical processes. Parameterisations are sources of large uncertainty in a model as parameter values used in these parameterisations cannot be measured directly and hence are often not well known; and the parameterisations themselves are also approximations of the processes present in the true atmosphere. Whilst there are many efficient and effective methods for combined state/parameter estimation in data assimilation (DA), such as state augmentation, these are not effective at estimating the structure of parameterisations. A new method of parameterisation estimation is proposed that uses sequential DA methods to estimate errors in the numerical models at each space-time point for each model equation. These errors are then fitted to pre-determined functional forms of missing physics or parameterisations that are based upon prior information. We applied the method to a one-dimensional advection model with additive model error, and it is shown that the method can accurately estimate parameterisations, with consistent error estimates. Furthermore, it is shown how the method depends on the quality of the DA results. The results indicate that this new method is a powerful tool in systematic model improvement.
Resumo:
The collective representation within global models of aerosol, cloud, precipitation, and their radiative properties remains unsatisfactory. They constitute the largest source of uncertainty in predictions of climatic change and hamper the ability of numerical weather prediction models to forecast high-impact weather events. The joint European Space Agency (ESA)–Japan Aerospace Exploration Agency (JAXA) Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) satellite mission, scheduled for launch in 2018, will help to resolve these weaknesses by providing global profiles of cloud, aerosol, precipitation, and associated radiative properties inferred from a combination of measurements made by its collocated active and passive sensors. EarthCARE will improve our understanding of cloud and aerosol processes by extending the invaluable dataset acquired by the A-Train satellites CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Aqua. Specifically, EarthCARE’s cloud profiling radar, with 7 dB more sensitivity than CloudSat, will detect more thin clouds and its Doppler capability will provide novel information on convection, precipitating ice particle, and raindrop fall speeds. EarthCARE’s 355-nm high-spectral-resolution lidar will measure directly and accurately cloud and aerosol extinction and optical depth. Combining this with backscatter and polarization information should lead to an unprecedented ability to identify aerosol type. The multispectral imager will provide a context for, and the ability to construct, the cloud and aerosol distribution in 3D domains around the narrow 2D retrieved cross section. The consistency of the retrievals will be assessed to within a target of ±10 W m–2 on the (10 km)2 scale by comparing the multiview broadband radiometer observations to the top-of-atmosphere fluxes estimated by 3D radiative transfer models acting on retrieved 3D domains.
Resumo:
The horizontal gradient of potential vorticity (PV) across the tropopause typically declines with lead time in global numerical weather forecasts and tends towards a steady value dependent on model resolution. This paper examines how spreading the tropopause PV contrast over a broader frontal zone affects the propagation of Rossby waves. The approach taken is to analyse Rossby waves on a PV front of finite width in a simple single-layer model. The dispersion relation for linear Rossby waves on a PV front of infinitesimal width is well known; here an approximate correction is derived for the case of a finite width front, valid in the limit that the front is narrow compared to the zonal wavelength. Broadening the front causes a decrease in both the jet speed and the ability of waves to propagate upstream. The contribution of these changes to Rossby wave phase speeds cancel at leading order. At second order the decrease in jet speed dominates, meaning phase speeds are slower on broader PV fronts. This asymptotic phase speed result is shown to hold for a wide class of single-layer dynamics with a varying range of PV inversion operators. The phase speed dependence on frontal width is verified by numerical simulations and also shown to be robust at finite wave amplitude, and estimates are made for the error in Rossby wave propagation speeds due to the PV gradient error present in numerical weather forecast models.
Resumo:
Friction plays a key role in causing slipperiness as a low coefficient of friction on the road may result in slippery and hazardous conditions. Analyzing the strong relation between friction and accident risk on winter roads is a difficult task. Many weather forecasting organizations use a variety of standard and bespoke methods to predict the coefficient of friction on roads. This article proposes an approach to predict the extent of slipperiness by building and testing an expert system. It estimates the coefficient of friction on winter roads in the province of Dalarna, Sweden using the prevailing weather conditions as a basis. Weather data from the road weather information system, Sweden (RWIS) was used. The focus of the project was to use the expert system as a part of a major project in VITSA, within the domain of intelligent transport systems
Resumo:
Due to the increase in water demand and hydropower energy, it is getting more important to operate hydraulic structures in an efficient manner while sustaining multiple demands. Especially, companies, governmental agencies, consultant offices require effective, practical integrated tools and decision support frameworks to operate reservoirs, cascades of run-of-river plants and related elements such as canals by merging hydrological and reservoir simulation/optimization models with various numerical weather predictions, radar and satellite data. The model performance is highly related with the streamflow forecast, related uncertainty and its consideration in the decision making. While deterministic weather predictions and its corresponding streamflow forecasts directly restrict the manager to single deterministic trajectories, probabilistic forecasts can be a key solution by including uncertainty in flow forecast scenarios for dam operation. The objective of this study is to compare deterministic and probabilistic streamflow forecasts on an earlier developed basin/reservoir model for short term reservoir management. The study is applied to the Yuvacık Reservoir and its upstream basin which is the main water supply of Kocaeli City located in the northwestern part of Turkey. The reservoir represents a typical example by its limited capacity, downstream channel restrictions and high snowmelt potential. Mesoscale Model 5 and Ensemble Prediction System data are used as a main input and the flow forecasts are done for 2012 year using HEC-HMS. Hydrometeorological rule-based reservoir simulation model is accomplished with HEC-ResSim and integrated with forecasts. Since EPS based hydrological model produce a large number of equal probable scenarios, it will indicate how uncertainty spreads in the future. Thus, it will provide risk ranges in terms of spillway discharges and reservoir level for operator when it is compared with deterministic approach. The framework is fully data driven, applicable, useful to the profession and the knowledge can be transferred to other similar reservoir systems.
Resumo:
Several positioning techniques have been developed to explore the GPS capability to provide precise coordinates in real time. However, a significant problem to all techniques is the ionosphere effect and the troposphere refraction. Recent researches in Brazil, at São Paulo State University (UNESP), have been trying to tackle these problems. In relation to the ionosphere effects it has been developed a model named Mod_Ion. Concerning tropospheric refraction, a model of Numerical Weather Prediction(NWP) has been used to compute the zenithal tropospheric delay (ZTD). These two models have been integrated with two positioning methods: DGPS (Differential GPS) and network RTK (Real Time Kinematic). These two positioning techniques are being investigated at São Paulo State University (UNESP), Brazil. The in-house DGPS software was already finalized and has provided very good results. The network RTK software is still under development. Therefore, only preliminary results from this method using the VRS (Virtual Reference Station) concept are presented.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A Center for Weather Forecast and Climatic Studies of National Institute for Space Research (CPTEC/INPE) has provided to the Brazilian Geodetic community, since 2004, an alternative to correct the GNSS observables from the tropospheric refraction. Numerical Weather Prediction (NWP) Model is used to generate Zenital Tropospheric Delay (ZTD). For the version 1, it was developed a model with horizontal resolution of 100 km, which was updated with Eta model, with resolution of 20 km. This paper provides the most significative details of the current version, as well an evaluation of its quality, using for such ZTD estimates from GPS data collect at RBMC. Comparing to the old version, considerable improvement could be observed from the new model, mainly in Brasilia and Curitiba, reaching up to 55% improvement. When all stations were used in the quality control, almost null bias and RMS of about 4 to 5 cm could be observed.
Resumo:
The EU HIBISCUS project consisted of a series of field campaigns during the intense convective summers in 2001, 2003 and 2004 in the State of São Paulo in Brazil. Its objective was to investigate the impact of deep convection on the Tropical Tropopause Layer (TTL) and the lower stratosphere by providing a new set of observational data on meteorology, tracers of horizontal and vertical transport, water vapour, clouds, and chemistry in the tropical Upper Troposphere/Lower Stratosphere (UT/LS). This was achieved using short duration research balloons to study local phenomena associated with convection over land, and long-duration balloons circumnavigating the globe to study the contrast between land and oceans.Analyses of observations of short-lived tracers, ozone and ice particles show strong episodic local updraughts of cold air across the lapse rate tropopause up to 18 or 19 km (420-440 K) in the lower stratosphere by overshooting towers. The long duration balloon and satellite measurements reveal a contrast between the composition of the lower stratosphere over land and oceanic areas, suggesting significant global impact of such events. The overshoots are shown to be well captured by non-hydrostatic meso-scale Cloud Resolving Models indicating vertical velocities of 50-60 m s(-1) at the top of the Neutral Buoyancy Level (NBL) at around 14 km, but, in contrast, are poorly represented by global Chemistry-Transport Models (CTM) forced by Numerical Weather Forecast Models (NWP) underestimating the overshooting process. Finally, the data collected by the HIBISCUS balloons have allowed a thorough evaluation of temperature NWP analyses and reanalyses, as well as satellite ozone, nitrogen oxide, water vapour and bromine oxide measurements in the tropics.
Resumo:
Forecasting, for obvious reasons, often become the most important goal to be achieved. For spatially extended systems (e.g. atmospheric system) where the local nonlinearities lead to the most unpredictable chaotic evolution, it is highly desirable to have a simple diagnostic tool to identify regions of predictable behaviour. In this paper, we discuss the use of the bred vector (BV) dimension, a recently introduced statistics, to identify the regimes where a finite time forecast is feasible. Using the tools from dynamical systems theory and Bayesian modelling, we show the finite time predictability in two-dimensional coupled map lattices in the regions of low BV dimension. © Indian Academy of Sciences.
Resumo:
Until mid 2006, SCIAMACHY data processors for the operational retrieval of nitrogen dioxide (NO2) column data were based on the historical version 2 of the GOME Data Processor (GDP). On top of known problems inherent to GDP 2, ground-based validations of SCIAMACHY NO2 data revealed issues specific to SCIAMACHY, like a large cloud-dependent offset occurring at Northern latitudes. In 2006, the GDOAS prototype algorithm of the improved GDP version 4 was transferred to the off-line SCIAMACHY Ground Processor (SGP) version 3.0. In parallel, the calibration of SCIAMACHY radiometric data was upgraded. Before operational switch-on of SGP 3.0 and public release of upgraded SCIAMACHY NO2 data, we have investigated the accuracy of the algorithm transfer: (a) by checking the consistency of SGP 3.0 with prototype algorithms; and (b) by comparing SGP 3.0 NO2 data with ground-based observations reported by the WMO/GAW NDACC network of UV-visible DOAS/SAOZ spectrometers. This delta-validation study concludes that SGP 3.0 is a significant improvement with respect to the previous processor IPF 5.04. For three particular SCIAMACHY states, the study reveals unexplained features in the slant columns and air mass factors, although the quantitative impact on SGP 3.0 vertical columns is not significant.
Resumo:
The main purpose of this work is to report the presence of spurious discontinuities in the pattern of diurnal variation of sea level pressure of the three reanalysis datasets from: the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Science (R1), the NCEP and Department of Energy (R2), and the European Centre for Medium Range Weather Forecasting (ERA-40). Such discontinuities can be connected to the major changes in the global observing system that have occurred throughout reanalyses years. In the R1, the richest period in discontinuities is 1956-1958, coinciding with the start of modern radiosonde observation network. Rapid increase in the density of surface-based observations from 1967 also had an important impact on both R1 and ERA-40, with larger impact on R1. The reanalyses show discontinuities in the 1970s related to the assimilation of radiances measured by the Vertical Temperature Profile Radiometer and TIROS-N Operational Vertical Sounders onboard satellites. In the ERA-40, which additionally assimilated Special Sensor Microwave/Imager data, there are discontinuities in 1987-1989. The R1 also presents further discontinuities, in 1988-1993 likely connected to replacement/introduction of NOAA-series satellites with different biases, and to the volcanic eruption of Mount Pinatubo in June 1991, which is known to have severely affected measurements of infrared radiances for several years. The discontinuities in 1996-1998 might be partially connected to change in the type of radiosonde, from VIZ-B to VIZ-B2. The R2, which covers only satellite era (1979-on), shows discontinuities mainly in 1992, 1996-1997, and 2001. The discontinuities in 1992 and 2001 might have been caused by change in the satellite measurements and those in 1996-1997 by some changes in land-based observations network. © 2012 Springer-Verlag.