938 resultados para Numa Pompilius, King of Rome, active 715-673 B.C


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying the immunologic and virologic consequences of discontinuing antiretroviral therapy in HIV-infected patients is of major importance in developing long-term treatment strategies for patients with HIV-1 infection. We designed a trial to characterize these parameters after interruption of highly active antiretroviral therapy (HAART) in patients who had maintained prolonged viral suppression on antiretroviral drugs. Eighteen patients with CD4+ T cell counts ≥ 350 cells/μl and viral load below the limits of detection for ≥1 year while on HAART were enrolled prospectively in a trial in which HAART was discontinued. Twelve of these patients had received prior IL-2 therapy and had low frequencies of resting, latently infected CD4 cells. Viral load relapse to >50 copies/ml occurred in all 18 patients independent of prior IL-2 treatment, beginning most commonly during weeks 2–3 after cessation of HAART. The mean relapse rate constant was 0.45 (0.20 log10 copies) day−1, which was very similar to the mean viral clearance rate constant after drug resumption of 0.35 (0.15 log10 copies) day−1 (P = 0.28). One patient experienced a relapse delay to week 7. All patients except one experienced a relapse burden to >5,000 RNA copies/ml. Ex vivo labeling with BrdUrd showed that CD4 and CD8 cell turnover increased after withdrawal of HAART and correlated with viral load whereas lymphocyte turnover decreased after reinitiation of drug treatment. Virologic relapse occurs rapidly in patients who discontinue suppressive drug therapy, even in patients with a markedly diminished pool of resting, latently infected CD4+ T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac hypertrophy and dilatation can result from stimulation of signal transduction pathways mediated by heterotrimeric G proteins, especially Gq, whose α subunit activates phospholipase Cβ (PLCβ). We now report that transient, modest expression of a hemagglutinin (HA) epitope-tagged, constitutively active mutant of the Gq α subunit (HAα*q) in hearts of transgenic mice is sufficient to induce cardiac hypertrophy and dilatation that continue to progress after the initiating stimulus becomes undetectable. At 2 weeks, HAα*q protein is expressed at less than 50% of endogenous αq/11, and the transgenic hearts are essentially normal morphologically. Although HAα*q protein declines at 4 weeks and is undetectable by 10 weeks, the animals develop cardiac hypertrophy and dilatation and die between 8 and 30 weeks in heart failure. As the pathology develops, endogenous αq/11 rises (2.9-fold in atria; 1.8-fold in ventricles). At 2 weeks, basal PLC activity is increased 9- to 10-fold in atria but not ventricles. By 10 weeks, it is elevated in both, presumably because of the rise in endogenous αq/11. We conclude that the pathological changes initiated by early, transient HAα*q expression are maintained in part by compensatory changes in signal transduction and other pathways. Cyclosporin A (CsA) prevents hypertrophy caused by activation of calcineurin [Molkentin, J. D., Lu, J.-R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., Grant, S. R. & Olson, E. N. (1998) Cell 93, 215–228]. Because HAα*q acts upstream of calcineurin, we hypothesized that HAα*q might initiate additional pathways leading to hypertrophy and dilatation. Treating HAα*q mice with CsA diminished some, but not all, aspects of the hypertrophic phenotype, suggesting that multiple pathways are involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three single-headed monomeric myosin I isozymes of Acanthamoeba castellanii (AMIs)—AMIA, AMIB, and AMIC—are among the best-studied of all myosins. We have used AMIC to study structural correlates of myosin’s actin-activated ATPase. This activity is normally controlled by phosphorylation of Ser-329, but AMIC may be switched into constitutively active or inactive states by substituting this residue with Glu or Ala, respectively. To determine whether activation status is reflected in structural differences in the mode of attachment of myosin to actin, these mutant myosins were bound to actin filaments in the absence of nucleotide (rigor state) and visualized at 24-Å resolution by using cryoelectron microscopy and image reconstruction. No such difference was observed. Consequently, we suggest that regulation may be affected not by altering the static (time-averaged) structure of AMIC but by modulating its dynamic properties, i.e., molecular breathing. The tail domain of vertebrate intestinal brush-border myosin I has been observed to swing through 31° on binding of ADP. However, it was predicted on grounds of differing kinetics that any such effects with AMIC should be small [Jontes, J. D., Ostap, E. M., Pollard, T. D. & Milligan, R. A. (1998) J. Cell Biol. 141, 155–162]. We have confirmed this hypothesis by observing actin-associated AMIC in its ADP-bound state. Finally, we compared AMIC to brush-border myosin I and AMIB, which were previously studied under similar conditions. In each case, the shape and angle of attachment to F-actin of the catalytic domain is largely conserved, but the domain structure and disposition of the tail is distinctively different for each myosin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two different mutations of the active-site Lys-296 in rhodopsin, K296E and K296M, have been found to cause autosomal dominant retinitis pigmentosa (ADRP). In vitro studies have shown that both mutations result in constitutive activation of the protein, suggesting that the activated state of the receptor may be responsible for retinal degeneration in patients with these mutations. Previous work has highlighted the potential of retinylamine analogs as active-site directed inactivators of constitutively active mutants of rhodopsin with the idea that these or related compounds might be used therapeutically for cases of ADRP involving mutations of the active-site Lys. Unfortunately, however, amine derivatives of 11-cis-retinal, although highly effective against a K296G mutant of rhodopsin, were without affect on the two naturally occurring ADRP mutants, presumably because of the greater steric bulk of Glu and Met side chains in comparison to Gly. For this reason we synthesized a retinylamine analog one carbon shorter than the parent 11-cis-retinal and show that this compound is indeed an effective inhibitor of both the K296E and K296M mutants. The 11-cis C19 retinylamine analog 1 inhibits constitutive activation of transducin by these mutants and their constitutive phosphorylation by rhodopsin kinase, and it does so in the presence of continuous illumination from room lights.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mice in which the genes encoding the parathyroid hormone (PTH)-related peptide (PTHrP) or the PTH/PTHrP receptor have been ablated by homologous recombination show skeletal dysplasia due to accelerated endochondral bone formation, and die at birth or in utero, respectively. Skeletal abnormalities due to decelerated chondrocyte maturation are observed in transgenic mice where PTHrP expression is targeted to the growth plate, and in patients with Jansen metaphyseal chondrodysplasia, a rare genetic disorder caused by constitutively active PTH/PTHrP receptors. These and other findings thus indicate that PTHrP and its receptor are essential for chondrocyte differentiation. To further explore the role of the PTH/PTHrP receptor in this process, we generated transgenic mice in which expression of a constitutively active receptor, HKrk-H223R, was targeted to the growth plate by the rat α1 (II) collagen promoter. Two major goals were pursued: (i) to investigate how constitutively active PTH/PTHrP receptors affect the program of chondrocyte maturation; and (ii) to determine whether expression of the mutant receptor would correct the severe growth plate abnormalities of PTHrP-ablated mice (PTHrP−/−). The targeted expression of constitutively active PTH/PTHrP receptors led to delayed mineralization, decelerated conversion of proliferative chondrocytes into hypertrophic cells in skeletal segments that are formed by the endochondral process, and prolonged presence of hypertrophic chondrocytes with delay of vascular invasion. Furthermore, it corrected at birth the growth plate abnormalities of PTHrP−/− mice and allowed their prolonged survival. “Rescued” animals lacked tooth eruption and showed premature epiphyseal closure, indicating that both processes involve PTHrP. These findings suggest that rescued PTHrP−/− mice may gain considerable importance for studying the diverse, possibly tissue-specific role(s) of PTHrP in postnatal development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cd1 nitrite reductase catalyzes the conversion of nitrite to NO in denitrifying bacteria. Reduction of the substrate occurs at the d1-heme site, which faces on the distal side some residues thought to be essential for substrate binding and catalysis. We report the results obtained by mutating to Ala the two invariant active site histidines, His-327 and His-369, of the enzyme from Pseudomonas aeruginosa. Both mutants have lost nitrite reductase activity but maintain the ability to reduce O2 to water. Nitrite reductase activity is impaired because of the accumulation of a catalytically inactive form, possibly because the productive displacement of NO from the ferric d1-heme iron is impaired. Moreover, the two distal His play different roles in catalysis; His-369 is absolutely essential for the stability of the Michaelis complex. The structures of both mutants show (i) the new side chain in the active site, (ii) a loss of density of Tyr-10, which slipped away with the N-terminal arm, and (iii) a large topological change in the whole c-heme domain, which is displaced 20 Å from the position occupied in the wild-type enzyme. We conclude that the two invariant His play a crucial role in the activity and the structural organization of cd1 nitrite reductase from P. aeruginosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human and animal fatty acid synthases are dimers of two identical multifunctional proteins (Mr 272,000) arranged in an antiparallel configuration. This arrangement generates two active centers for fatty acid synthesis separated by interdomain (ID) regions and predicts that two appropriate halves of the monomer should be able to reconstitute an active fatty acid synthesizing center. This prediction was confirmed by the reconstitution of the synthase active center by using two heterologously expressed halves of the monomer protein. Each of these recombinant halves of synthase monomer contains half of the ID regions. We show here that the fatty acid synthase activity could not be reconstituted when the ID sequences present in the two recombinant halves are deleted, suggesting that these ID sequences are essential for fatty acid synthase dimer formation. Further, we confirm that the ID sequences are the only regions of fatty acid synthase monomers that showed significant dimer formation, by using the yeast two-hybrid system. These results are consistent with the proposal that the ID region, which has no known catalytic activity, associates readily and holds together the two dynamic active centers of the fatty acid synthase dimer, therefore playing an important role in the architecture of catalytically active fatty acid synthase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

delta-Aminolevulinate in plants, algae, cyanobacteria, and several other bacteria such as Escherichia coli and Bacillus subtilis is synthesized from glutamate by means of a tRNA(Glu) mediated pathway. The enzyme glutamyl tRNA(Glu) reductase catalyzes the second step in this pathway, the reduction of tRNA bound glutamate to give glutamate 1-semialdehyde. The hemA gene from barley encoding the glutamyl tRNA(Glu) reductase was expressed in E. coli cells joined at its amino terminal end to Schistosoma japonicum glutathione S-transferase (GST). GST-glutamyl tRNA(Glu) reductase fusion protein and the reductase released from it by thrombin digestion catalyzed the reduction of glutamyl tRNA(Glu) to glutamate 1-semialdehyde. The specific activity of the fusion protein was 120 pmol.micrograms-1.min-1. The fusion protein used tRNA(Glu) from barley chloroplasts preferentially to E. coli tRNA(Glu) and its activity was inhibited by hemin. It migrated as an 82-kDa polypeptide with SDS/PAGE and eluted with an apparent molecular mass of 450 kDa from Superose 12. After removal of the GST by thrombin, the protein migrated as an approximately equal to 60-kDa polypeptide with SDS/PAGE, whereas gel filtration on Superose 12 yielded an apparent molecule mass of 250 kDa. Isolated fusion protein contained heme, which could be reduced by NADPH and oxidized by air.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reconstitutable apoprotein of Crotalus adamanteus L-amino acid oxidase was prepared using hydrophobic interaction chromatography. After reconstitution with flavin adenine dinucleotide, the resulting protein was inactive, with a perturbed conformation of the flavin binding site. Subsequently, a series of cosolvent-dependent compact intermediates was identified. The nearly complete activation of the reconstituted apoprotein and the restoration of its native flavin binding site was achieved in the presence of 50% glycerol. We provide evidence that in addition to a merely stabilizing effect of glycerol on native proteins, glycerol can also have a restorative effect on their compact equilibrium intermediates, and we suggest the hydrophobic effect as a dominating force in this in vitro-assisted restorative process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histamine H2 receptors transfected in Chinese hamster ovary (CHO) cells are time- and dose-dependently upregulated upon exposure to the H2 antagonists cimetidine and ranitidine. This effect appears to be H2 receptor-mediated as no change in receptor density was observed after H1 or H3 antagonist treatment or after incubation with the structural analogue of cimetidine, VUF 8299, which has no H2 antagonistic effects. By using transfected CHO cells expressing different densities of wild-type H2 receptors or an uncoupled H2Leu124Ala receptor, the histamine H2 receptor was found to display considerable agonist-independent H2 receptor activity. Cimetidine and ranitidine, which both induce H2 receptor upregulation, actually functioned as inverse agonists in those cell lines displaying spontaneous agonist-independent H2 receptor activity. Burimamide, on the other hand, was shown to act as a neutral antagonist and did as expected not induce H2 receptor upregulation after long-term exposure. The displayed inverse agonism of H2 antagonists appears to be a mechanistic basis for the observed H2 antagonist-induced H2 receptor upregulation in transfected CHO cells. These observations shed new light on the pharmacological classification of the H2 antagonists and may offer a plausible explanation for the observed development of tolerance after prolonged clinical use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beta-Lactamases are widespread in the bacterial world, where they are responsible for resistance to penicillins, cephalosporins, and related compounds, currently the most widely used antibacterial agents. Detailed structural and mechanistic understanding of these enzymes can be expected to guide the design of new antibacterial compounds resistant to their action. A number of high-resolution structures are available for class A beta-lactamases, whose catalytic mechanism involves the acylation of a serine residue at the active site. The identity of the general base which participates in the activation of this serine residue during catalysis has been the subject of controversy, both a lysine residue and a glutamic acid residue having been proposed as candidates for this role. We have used the pH dependence of chemical modification of epsilon-amino groups by 2,4,6,-trinitrobenzenesulfonate and the pH dependence of the epsilon-methylene 1H and 13C chemical shifts (in enzyme selectively labeled with [epsilon-13C]lysine) to estimate the pKa of the relevant lysine residue, lysine-73, of TEM-1 beta-lactamase. Both methods show that the pKa of this residue is > 10, making it very unlikely that this residue could act as a proton acceptor in catalysis. An alternative mechanism in which this role is performed by glutamate-166 through an intervening water molecule is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transgenic mice and sheep secrete only low levels of human factor IX in their milk because of an aberrant splicing of the transgene RNA in the mammary gland. Removal of the cryptic 3' splice site prevents this splicing and leads to the production of relatively high levels of factor IX. The purified protein is fully active showing that the mammary gland is capable of the efficient post-translational modification of this protein and that transgenic animals are a suitable means of its production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The active site of the allosteric chorismate mutase (chorismate pyruvatemutase, EC 5.4.99.5) from yeast Saccharomyces cerevisiae (YCM) was located by comparison with the mutase domain (ECM) of chorismate mutase/prephenate dehydratase [prephenate hydro-lyase (decarboxylating), EC 4.2.1.51] (the P protein) from Escherichia coli. Active site domains of these two enzymes show very similar four-helix bundles, each of 94 residues which superimpose with a rms deviation of 1.06 A. Of the seven active site residues, four are conserved: the two arginines, which bind to the inhibitor's two carboxylates; the lysine, which binds to the ether oxygen; and the glutamate, which binds to the inhibitor's hydroxyl group in ECM and presumably in YCM. The other three residues in YCM (ECM) are Thr-242 (Ser-84), Asn-194 (Asp-48), and Glu-246 (Gln-88). This Glu-246, modeled close to the ether oxygen of chorismate in YCM, may function as a polarizing or ionizable group, which provides another facet to the catalytic mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenol oxidase (PO) was isolated as a proenzyme (pro-phenol oxidase, pro-PO) from the hemolymph of Manduca sexta larvae and purified to homogeneity. Pro-PO exhibits a M(r) of 130,000 on gel filtration and two bands with an apparent M(r) of approximately 100,000 on SDS/PAGE, as well as size-exclusion HPLC. Activation of pro-PO was achieved either by specific proteolysis by a cuticular protease or by the detergent cetylpyridinium chloride at a concentration below the critical micellar concentration. A cDNA clone for M. sexta pro-PO was obtained from a larval hemocyte cDNA library. The clone encodes a polypeptide of approximately 80,000 Da that contains two copper-binding sites and shows high sequence similarity to POs, hemocyanins, and storage proteins of arthropods. The M. Sexta pro-PO, together with other arthropod pro-POs, contains a short stretch of amino acids with sequence similarity to the thiol ester region of alpha-macroglobulins and complement proteins C3 and C4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During early mammalian embryogenesis, one of the two X chromosomes in somatic cells of the female becomes inactivated through a process that is thought to depend on a unique initiator region, the X-chromosome inactivation center (Xic). The recently characterized Xist sequence (X-inactive-specific transcript) is thought to be a possible candidate for Xic. In mice a further genetic element, the X chromosome-controlling element (Xce), is also known to influence the choice of which of the two X chromosomes is inactivated. We report that a region of the mouse X chromosome lying 15 kb distal to Xist contains several sites that show hypermethylation specifically associated with the active X chromosome. Analysis of this region in various Xce strains has revealed a correlation between the strength of the Xce allele carried and the methylation status of this region. We propose that such a region could be involved in the initial stages of the inactivation process and in particular in the choice of which of the two X chromosomes present in a female cell will be inactivated.