896 resultados para Nonparametric regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the analysis of tax reform, when equity is traded off against efficiency, the measurement of the latter requires us to know how tax-induced price changes affect quantities supplied and demanded. in this paper, we present various econometric procedures for estimating how taxes affect demand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse porte sur l'analyse bayésienne de données fonctionnelles dans un contexte hydrologique. L'objectif principal est de modéliser des données d'écoulements d'eau d'une manière parcimonieuse tout en reproduisant adéquatement les caractéristiques statistiques de celles-ci. L'analyse de données fonctionnelles nous amène à considérer les séries chronologiques d'écoulements d'eau comme des fonctions à modéliser avec une méthode non paramétrique. Dans un premier temps, les fonctions sont rendues plus homogènes en les synchronisant. Ensuite, disposant d'un échantillon de courbes homogènes, nous procédons à la modélisation de leurs caractéristiques statistiques en faisant appel aux splines de régression bayésiennes dans un cadre probabiliste assez général. Plus spécifiquement, nous étudions une famille de distributions continues, qui inclut celles de la famille exponentielle, de laquelle les observations peuvent provenir. De plus, afin d'avoir un outil de modélisation non paramétrique flexible, nous traitons les noeuds intérieurs, qui définissent les éléments de la base des splines de régression, comme des quantités aléatoires. Nous utilisons alors le MCMC avec sauts réversibles afin d'explorer la distribution a posteriori des noeuds intérieurs. Afin de simplifier cette procédure dans notre contexte général de modélisation, nous considérons des approximations de la distribution marginale des observations, nommément une approximation basée sur le critère d'information de Schwarz et une autre qui fait appel à l'approximation de Laplace. En plus de modéliser la tendance centrale d'un échantillon de courbes, nous proposons aussi une méthodologie pour modéliser simultanément la tendance centrale et la dispersion de ces courbes, et ce dans notre cadre probabiliste général. Finalement, puisque nous étudions une diversité de distributions statistiques au niveau des observations, nous mettons de l'avant une approche afin de déterminer les distributions les plus adéquates pour un échantillon de courbes donné.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans ce mémoire, nous cherchons à modéliser des tables à deux entrées monotones en lignes et/ou en colonnes, pour une éventuelle application sur les tables de mortalité. Nous adoptons une approche bayésienne non paramétrique et représentons la forme fonctionnelle des données par splines bidimensionnelles. L’objectif consiste à condenser une table de mortalité, c’est-à-dire de réduire l’espace d’entreposage de la table en minimisant la perte d’information. De même, nous désirons étudier le temps nécessaire pour reconstituer la table. L’approximation doit conserver les mêmes propriétés que la table de référence, en particulier la monotonie des données. Nous travaillons avec une base de fonctions splines monotones afin d’imposer plus facilement la monotonie au modèle. En effet, la structure flexible des splines et leurs dérivées faciles à manipuler favorisent l’imposition de contraintes sur le modèle désiré. Après un rappel sur la modélisation unidimensionnelle de fonctions monotones, nous généralisons l’approche au cas bidimensionnel. Nous décrivons l’intégration des contraintes de monotonie dans le modèle a priori sous l’approche hiérarchique bayésienne. Ensuite, nous indiquons comment obtenir un estimateur a posteriori à l’aide des méthodes de Monte Carlo par chaînes de Markov. Finalement, nous étudions le comportement de notre estimateur en modélisant une table de la loi normale ainsi qu’une table t de distribution de Student. L’estimation de nos données d’intérêt, soit la table de mortalité, s’ensuit afin d’évaluer l’amélioration de leur accessibilité.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’intérêt principal de cette recherche porte sur la validation d’une méthode statistique en pharmaco-épidémiologie. Plus précisément, nous allons comparer les résultats d’une étude précédente réalisée avec un devis cas-témoins niché dans la cohorte utilisé pour tenir compte de l’exposition moyenne au traitement : – aux résultats obtenus dans un devis cohorte, en utilisant la variable exposition variant dans le temps, sans faire d’ajustement pour le temps passé depuis l’exposition ; – aux résultats obtenus en utilisant l’exposition cumulative pondérée par le passé récent ; – aux résultats obtenus selon la méthode bayésienne. Les covariables seront estimées par l’approche classique ainsi qu’en utilisant l’approche non paramétrique bayésienne. Pour la deuxième le moyennage bayésien des modèles sera utilisé pour modéliser l’incertitude face au choix des modèles. La technique utilisée dans l’approche bayésienne a été proposée en 1997 mais selon notre connaissance elle n’a pas été utilisée avec une variable dépendante du temps. Afin de modéliser l’effet cumulatif de l’exposition variant dans le temps, dans l’approche classique la fonction assignant les poids selon le passé récent sera estimée en utilisant des splines de régression. Afin de pouvoir comparer les résultats avec une étude précédemment réalisée, une cohorte de personnes ayant un diagnostique d’hypertension sera construite en utilisant les bases des données de la RAMQ et de Med-Echo. Le modèle de Cox incluant deux variables qui varient dans le temps sera utilisé. Les variables qui varient dans le temps considérées dans ce mémoire sont iv la variable dépendante (premier évènement cérébrovasculaire) et une des variables indépendantes, notamment l’exposition

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contexte : Un accès adéquat aux aliments sains dans les environnements résidentiels peut contribuer aux saines habitudes alimentaires. Un tel accès est d’autant plus important pour les personnes âgées, où les changements associés au vieillissement peuvent accentuer leur dépendance aux ressources disponibles dans le voisinage. Cependant, cette relation n’a pas encore été établie chez les aînés. Objectifs : La présente thèse vise à quantifier les associations entre l’environnement alimentaire local et les habitudes alimentaires de personnes âgées vivant à domicile en milieu urbain. La thèse s’est insérée dans un projet plus large qui a apparié les données provenant d’une cohorte d’aînés québécois vivant dans la région métropolitaine montréalaise avec des données provenant d’un système d’information géographique. Trois études répondent aux objectifs spécifiques suivants : (1) développer des indices relatifs de mixité alimentaire pour qualifier l’offre d’aliments sains dans les magasins d’alimentation et l’offre de restaurants situés dans les quartiers faisant partie du territoire à l’étude et en examiner la validité; (2) quantifier les associations entre la disponibilité relative de magasins d’alimentation et de restaurants près du domicile et les habitudes alimentaires des aînés; (3) examiner l’influence des connaissances subjectives en nutrition dans la relation entre l’environnement alimentaire près du domicile et les habitudes alimentaires chez les hommes et les femmes âgés. Méthodes : Le devis consiste en une analyse secondaire de données transversales provenant de trois sources : les données du cycle 1 pour 848 participants de l’Étude longitudinale québécoise « La nutrition comme déterminant d’un vieillissement réussi » (2003-2008), le Recensement de 2001 de Statistique Canada et un registre privé de commerces et services (2005), ces derniers regroupés dans un système d’information géographique nommé Mégaphone. Des analyses bivariées non paramétriques ont été appliquées pour répondre à l’objectif 1. Les associations entre l’exposition aux commerces alimentaires dans le voisinage et les habitudes alimentaires (objectif 2), ainsi que l’influence des connaissances subjectives en nutrition dans cette relation (objectif 3), ont été vérifiées au moyen d’analyses de régression linéaires. Résultats : Les analyses ont révélé trois résultats importants. Premièrement, l’utilisation d’indices relatifs pour caractériser l’offre alimentaire s’avère pertinente pour l’étude des habitudes alimentaires, plus particulièrement pour l’offre de restaurants-minute. Deuxièmement, l’omniprésence d’aspects défavorables dans l’environnement, caractérisé par une offre relativement plus élevée de restaurants-minute, semble nuire davantage aux saines habitudes alimentaires que la présence d’opportunités d’achats d’aliments sains dans les magasins d’alimentation. Troisièmement, un environnement alimentaire plus favorable aux saines habitudes pourrait réduire les écarts quant à la qualité de l’alimentation chez les femmes ayant de plus faibles connaissances subjectives en nutrition par rapport aux femmes mieux informées. Conclusion : Ces résultats mettent en relief la complexité des liens entre l’environnement local et l’alimentation. Dans l’éventualité où ces résultats seraient reproduits dans des recherches futures, des stratégies populationnelles visant à résoudre un déséquilibre entre l’accès aux sources d’aliments sains par rapport aux aliments peu nutritifs semblent prometteuses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider two new approaches to nonparametric estimation of the leverage effect. The first approach uses stock prices alone. The second approach uses the data on stock prices as well as a certain volatility instrument, such as the CBOE volatility index (VIX) or the Black-Scholes implied volatility. The theoretical justification for the instrument-based estimator relies on a certain invariance property, which can be exploited when high frequency data is available. The price-only estimator is more robust since it is valid under weaker assumptions. However, in the presence of a valid volatility instrument, the price-only estimator is inefficient as the instrument-based estimator has a faster rate of convergence. We consider two empirical applications, in which we study the relationship between the leverage effect and the debt-to-equity ratio, credit risk, and illiquidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of conducting inference on nonparametric high-frequency estimators without knowing their asymptotic variances. We prove that a multivariate subsampling method achieves this goal under general conditions that were not previously available in the literature. We suggest a procedure for a data-driven choice of the bandwidth parameters. Our simulation study indicates that the subsampling method is much more robust than the plug-in method based on the asymptotic expression for the variance. Importantly, the subsampling method reliably estimates the variability of the Two Scale estimator even when its parameters are chosen to minimize the finite sample Mean Squared Error; in contrast, the plugin estimator substantially underestimates the sampling uncertainty. By construction, the subsampling method delivers estimates of the variance-covariance matrices that are always positive semi-definite. We use the subsampling method to study the dynamics of financial betas of six stocks on the NYSE. We document significant variation in betas within year 2006, and find that tick data captures more variation in betas than the data sampled at moderate frequencies such as every five or twenty minutes. To capture this variation we estimate a simple dynamic model for betas. The variance estimation is also important for the correction of the errors-in-variables bias in such models. We find that the bias corrections are substantial, and that betas are more persistent than the naive estimators would lead one to believe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this letter is to formulate a new approach of learning a Mahalanobis distance metric for nearest neighbor regression from a training sample set. We propose a modified version of the large margin nearest neighbor metric learning method to deal with regression problems. As an application, the prediction of post-operative trunk 3-D shapes in scoliosis surgery using nearest neighbor regression is described. Accuracy of the proposed method is quantitatively evaluated through experiments on real medical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multivariate lifetime data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated lifetime when an individual is followed for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In most studies there are covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. This leads to a consideration of regression models.The well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not sufficient to explain the complete dependence structure of pair of lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a bivariate proportional hazards model using vector hazard function of Johnson and Kotz (1975), in which the covariates under study have different effect on two components of the vector hazard function. The proposed model is useful in real life situations to study the dependence structure of pair of lifetimes on the covariate vector . The well known partial likelihood approach is used for the estimation of parameter vectors. We then introduced a bivariate proportional hazards model for gap times of recurrent events in Chapter 3. The model incorporates both marginal and joint dependence of the distribution of gap times on the covariate vector . In many fields of application, mean residual life function is considered superior concept than the hazard function. Motivated by this, in Chapter 4, we considered a new semi-parametric model, bivariate proportional mean residual life time model, to assess the relationship between mean residual life and covariates for gap time of recurrent events. The counting process approach is used for the inference procedures of the gap time of recurrent events. In many survival studies, the distribution of lifetime may depend on the distribution of censoring time. In Chapter 5, we introduced a proportional hazards model for duration times and developed inference procedures under dependent (informative) censoring. In Chapter 6, we introduced a bivariate proportional hazards model for competing risks data under right censoring. The asymptotic properties of the estimators of the parameters of different models developed in previous chapters, were studied. The proposed models were applied to various real life situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The average availability of a repairable system is the expected proportion of time that the system is operating in the interval [0, t]. The present article discusses the nonparametric estimation of the average availability when (i) the data on 'n' complete cycles of system operation are available, (ii) the data are subject to right censorship, and (iii) the process is observed upto a specified time 'T'. In each case, a nonparametric confidence interval for the average availability is also constructed. Simulations are conducted to assess the performance of the estimators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis Entitled “modelling and analysis of recurrent event data with multiple causes.Survival data is a term used for describing data that measures the time to occurrence of an event.In survival studies, the time to occurrence of an event is generally referred to as lifetime.Recurrent event data are commonly encountered in longitudinal studies when individuals are followed to observe the repeated occurrences of certain events. In many practical situations, individuals under study are exposed to the failure due to more than one causes and the eventual failure can be attributed to exactly one of these causes.The proposed model was useful in real life situations to study the effect of covariates on recurrences of certain events due to different causes.In Chapter 3, an additive hazards model for gap time distributions of recurrent event data with multiple causes was introduced. The parameter estimation and asymptotic properties were discussed .In Chapter 4, a shared frailty model for the analysis of bivariate competing risks data was presented and the estimation procedures for shared gamma frailty model, without covariates and with covariates, using EM algorithm were discussed. In Chapter 6, two nonparametric estimators for bivariate survivor function of paired recurrent event data were developed. The asymptotic properties of the estimators were studied. The proposed estimators were applied to a real life data set. Simulation studies were carried out to find the efficiency of the proposed estimators.