937 resultados para Non-equilibrium Social Management
Resumo:
Feedback from the most massive components of a young stellar cluster deeply affects the surrounding ISM driving an expanding over-pressured hot gas cavity in it. In spiral galaxies these structures may have sufficient energy to break the disk and eject large amount of material into the halo. The cycling of this gas, which eventually will fall back onto the disk, is known as galactic fountains. We aim at better understanding the dynamics of such fountain flow in a Galactic context, frame the problem in a more dynamic environment possibly learning about its connection and regulation to the local driving mechanism and understand its role as a metal diffusion channel. The interaction of the fountain with a hot corona is hereby analyzed, trying to understand the properties and evolution of the extraplanar material. We perform high resolution hydrodynamical simulations with the moving-mesh code AREPO to model the multi-phase ISM of a Milky Way type galaxy. A non-equilibrium chemical network is included to self consistently follow the evolution of the main coolants of the ISM. Spiral arm perturbations in the potential are considered so that large molecular gas structures are able to dynamically form here, self shielded from the interstellar radiation field. We model the effect of SN feedback from a new-born stellar cluster inside such a giant molecular cloud, as the driving force of the fountain. Passive Lagrangian tracer particles are used in conjunction to the SN energy deposition to model and study diffusion of freshly synthesized metals. We find that both interactions with hot coronal gas and local ISM properties and motions are equally important in shaping the fountain. We notice a bimodal morphology where most of the ejected gas is in a cold $10^4$ K clumpy state while the majority of the affected volume is occupied by a hot diffuse medium. While only about 20\% of the produced metals stay local, most of them quickly diffuse through this hot regime to great scales.
Resumo:
Background Although evolutionary models of cooperation build on the intuition that costs of the donor and benefits to the receiver are the most general fundamental parameters, it is largely unknown how they affect the decision of animals to cooperate with an unrelated social partner. Here we test experimentally whether costs to the donor and need of the receiver decide about the amount of help provided by unrelated rats in an iterated prisoner's dilemma game. Results Fourteen unrelated Norway rats were alternately presented to a cooperative or defective partner for whom they could provide food via a mechanical apparatus. Direct costs for this task and the need of the receiver were manipulated in two separate experiments. Rats provided more food to cooperative partners than to defectors (direct reciprocity). The propensity to discriminate between helpful and non-helpful social partners was contingent on costs: An experimentally increased resistance in one Newton steps to pull food for the social partner reduced the help provided to defectors more strongly than the help returned to cooperators. Furthermore, test rats provided more help to hungry receivers that were light or in poor condition, which might suggest empathy, whereas this relationship was inverse when experimental partners were satiated. Conclusions In a prisoner's dilemma situation rats seem to take effect of own costs and potential benefits to a receiver when deciding about helping a social partner, which confirms the predictions of reciprocal cooperation. Thus, factors that had been believed to be largely confined to human social behaviour apparently influence the behaviour of other social animals as well, despite widespread scepticism. Therefore our results shed new light on the biological basis of reciprocity.
Resumo:
The craze for faster and smaller electronic devices has never gone down and this has always kept researchers on their toes. Following Moore’s law, which states that the number of transistors in a single chip will double in every 18 months, today “30 million transistors can fit into the head of a 1.5 mm diameter pin”. But this miniaturization cannot continue indefinitely due to the ‘quantum leakage’ limit in the thickness of the insulating layer between the gate electrode and the current carrying channel. To bypass this limitation, scientists came up with the idea of using vastly available organic molecules as components in an electronic device. One of the primary challenges in this field was the ability to perform conductance measurements across single molecular junctions. Once that was achieved the focus shifted to a deeper understanding of the underlying physics behind the electron transport across these molecular scale devices. Our initial theoretical approach is based on the conventional Non-Equilibrium Green Function(NEGF) formulation, but the self-energy of the leads is modified to include a weighting factor that ensures negligible current in the absence of a molecular pathway as observed in a Mechanically Controlled Break Junction (MCBJ) experiment. The formulation is then made parameter free by a more careful estimation of the self-energy of the leads. The calculated conductance turns out to be atleast an order more than the experimental values which is probably due to a strong chemical bond at the metal-molecule junction unlike in the experiments. The focus is then shifted to a comparative study of charge transport in molecular wires of different lengths within the same formalism. The molecular wires, composed of a series of organic molecules, are sanwiched between two gold electrodes to make a two terminal device. The length of the wire is increased by sequentially increasing the number of molecules in the wire from 1 to 3. In the low bias regime all the molecular devices are found to exhibit Ohmic behavior. However, the magnitude of conductance decreases exponentially with increase in length of the wire. In the next study, the relative contribution of the ‘in-phase’ and the ‘out-of-phase’ components of the total electronic current under the influence of an external bias is estimated for the wires of three different lengths. In the low bias regime, the ‘out-of-phase’ contribution to the total current is minimal and the ‘in-phase’ elastic tunneling of the electrons is responsible for the net electronic current. This is true irrespective of the length of the molecular spacer. In this regime, the current-voltage characteristics follow Ohm’s law and the conductance of the wires is found to decrease exponentially with increase in length which is in agreement with experimental results. However, after a certain ‘off-set’ voltage, the current increases non-linearly with bias and the ‘out-of-phase’ tunneling of electrons reduces the net current substantially. Subsequently, the interaction of conduction electrons with the vibrational modes as a function of external bias in the three different oligomers is studied since they are one of the main sources of phase-breaking scattering. The number of vibrational modes that couple strongly with the frontier molecular orbitals are found to increase with length of the spacer and the external field. This is consistent with the existence of lowest ‘off-set’ voltage for the longest wire under study.
Resumo:
Solid oxide fuel cells (SOFCs) are promising devices for stationary and portable power and heat generation, because they can use complex fuels such as hydro-carbons, CO, and alcohols. Extreme, non-equilibrium conditions and high tem-peratures (≥ 700 ˚C) required for SOFC operation hamper efforts to understand the mechanisms of component degradation in SOFCs. This talk focuses on new insights into SOFC chemistry and the conversion of carbon-containing fuels (both hydrocarbons and oxygenated) into electricity, carbon dioxide and water, gleaned from a combination of techniques including electrochemical impedance spectroscopy, voltammetry, and vibrational Raman scattering.
Resumo:
Family offices are organisations dedicated to the management of entrepreneurial families’ private wealth. Based on agency theory, we analyse types of family offices with regard to the families’ goals and the control mechanisms used to ensure goal achievement. Family-dominant management and private client structures involve stronger emphasis on non-financial goals in single and multi-family offices than in non-family-dominant management and open client structures. Variations in family involvement, ranging from family dominance to the complete absence of family ownership and/or management, and diverse client structures justify the differential reliance on formal and informal control mechanisms.
Resumo:
A process evaluation of the Houston Childhood Lead Poisoning Prevention Program, 1992-1995, was conducted. The Program's goal is to reduce lead poisoning prevalence. The study proposed to determine to what extent the Program was implemented as planned by measuring how well Program services were actually: (1) received by the intended target population; (2) delivered to children with elevated blood lead levels; (3) delivered in compliance with the Centers for Disease Control and Prevention and Program guidelines and timetables; and (4) able to reduce lead poisoning prevalence among those rescreened. Utilizing a program monitoring design, the Program's pre-collected computer records were reviewed. The study sample consisted of 820 children whose blood lead levels were above 15 micrograms per deciLiter, representing approximately 2.9% of the 28,406 screened over this period. Three blood lead levels from each participant were examined: the initial elevated result; the confirmatory result; and the next rescreen result, after the elevated confirmatory level. Results showed that the Program screened approximately 18% (28,406 of 161,569) of Houston's children under age 6 years for lead poisoning. Based on Chi-square tests of significance, results also showed that lead-poisoned participants were more likely to be younger than 3 years, male and Hispanic, compared to those not lead poisoned. The age, gender and ethnic differences observed were statistically significant (p =.01, p =.00, p =.00). Four of the six Program services: medical evaluations, rescreening, environmental inspections and confirmation, had satisfactory delivery completion rates of 71%-98%. Delivery timetable compliance rates for three of the six services examined: outreach contacts, home visits and environmental inspections were below 32%. However, dangerously elevated blood lead levels fell and lead poisoning prevalence dropped from 3.3% at initial screening to 1.2% among those rescreened, after intervention. From a public health perspective, reductions in lead poisoning prevalence are very meaningful. Based on these findings, the following are recommendations for future research: (1) integrate Program database files by utilizing a computer database management program; (2) target services at Hispanic male children under age 3 years living in the highest risk neighborhoods; (3) increase resources to: improve tracking and documentation of service delivery and provide more non-medical case management and environmental services; and (4) share the evaluation methodology/findings with the Centers for Disease Control and Prevention administrators; the implications may be relevant to other program managers conducting such assessments. ^
Resumo:
A series of chimaeric DNA/RNA triplex-forming oligonucleotides (TFOs) with identical base-sequence but varying sequential composition of the sugar residues were prepared. The structural, kinetic and thermodynamic properties of triplex formation with their corresponding double-helical DNA target were investigated by spectroscopic methods. Kinetic and thermodynamic data were obtained from analysis of non-equilibrium UV-melting- and annealing curves in the range of pH 5.1 to 6.7 in a 10 mM citrate/phosphate buffer containing 0.1M NaCl and 1 mM EDTA. It was found that already single substitutions of ribo- for deoxyribonucleotides in the TFOs greatly affect stability and kinetics of triplex formation in a strongly sequence dependent manner. Within the sequence context investigated, triplex stability was found to increase when deoxyribonucleotides were present at the 5'-side and ribonucleotides in the center of the TFO. Especially the substitution of thymidines for uridines in the TFO was found to accelerate both, the association and dissociation process, in a strongly position-dependent way. Differential structural information on triplexes and TFO single-strands was obtained from CD-spectroscopy and gel mobility experiments. Only minor changes were observed in the CD spectra of the triplexes at all pH values investigated, and the electrophoretic mobility was nearly identical in all cases, indicating a high degree of structural similarity. In contrast, the single-stranded TFOs showed high structural variability as determined in the same way. The results are discussed in the context of the design of TFOs for therapeutic or biochemical applications.
Resumo:
Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.
Resumo:
We investigate the effect of habitat fragmentation on the genetic diversity of a species experiencing a range expansion. These two evolutionary processes have not been studied yet, at the same time, owing to the difficulties of deriving analytic results for non-equilibrium models. Here we provide a description of their interaction by using extensive spatial and temporal coalescent simulations and we suggest guidelines for a proper genetic sampling to detect fragmentation. To model habitat fragmentation, we simulated a two-dimensional lattice of demes partitioned into groups (patches) by adding barriers to dispersal. After letting a population expand on this grid, we sampled lineages from the lattice at several scales and studied their coalescent history. We find that in order to detect fragmentation, one needs to extensively sample at a local level rather than at a landscape level. This is because the gene genealogy of a scattered sample is less sensitive to the presence of genetic barriers. Considering the effect of temporal changes of fragmentation intensities, we find that at least 10, but often >100, generations are needed to affect local genetic diversity and population structure. This result explains why recent habitat fragmentation does not always lead to detectable signatures in the genetic structure of populations. Finally, as expected, long-distance dispersal increases local genetic diversity and decreases levels of population differentiation, efficiently counteracting the effects of fragmentation.
Resumo:
The putative recent indication of an unidentified 3.55 keV X-ray line in certain astrophysical sources is taken as a motivation for an improved theoretical computation of the cosmological abundance of 7.1 keV sterile neutrinos. If the line is interpreted as resulting from the decay of Warm Dark Matter, the mass and mixing angle of the sterile neutrino are known. Our computation then permits for a determination of the lepton asymmetry that is needed for producing the correct abundance via the Shi-Fuller mechanism, as well as for an estimate of the non-equilibrium spectrum of the sterile neutrinos. The latter plays a role in structure formation simulations. Results are presented for different flavour structures of the neutrino Yukawa couplings and for different types of pre-existing lepton asymmetries, accounting properly for the charge neutrality of the plasma and incorporating approximately hadronic contributions.
Resumo:
Infiltration is dominantly gravity driven, and a viscous-flow approach was developed. Laminar film flow equilibrates gravity with the viscous force and a constant flow velocity evolves during a period lasting 3/2 times the duration of a constant input rate, qS. Film thickness F and the specific contact area L of the film per unit soil volume are the key parameters. Sprinkler irrigation produced in situ time series of volumetric water contents, θ(z,t), as determined with TDR probes. The wetting front velocity v and the time series of the mobile water content, w(z,t) were deduced from θ(z,t). In vitro steady flow in a core of saturated soil provided volume flux density, q(z,t), and flow velocity, v, as determined from a heat front velocity. The F and L parameters of the in situ and the in vitro experiments were compared. The macropore-flow restriction states that, for a particular permeable medium, the specific contact area L must be independent from qS i.e., dL/dqS = 0. If true, then the relationship of qS ∝ v3/2 could scale a wide range of input rates 0 ≤ qS ≤ saturated hydraulic conductivity, Ksat, into a permeable medium, and kinematic-wave theory would become a versatile tool to deal with non-equilibrium flow. The viscous-flow approach is based on hydromechanical principles similar to Darcy’s law, but currently it is not suited to deduce flow properties from specified individual spatial structures of permeable media.
Resumo:
Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.
Resumo:
Phyllosilicates occurring as replacements of olivine, clinopyroxene and interstitial materials and as veins or fracture-fillings in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 have been studied using transmission and analytical electron microscopy. The parageneses of phyllosilicates generally change systematically with depth and with the degree of alteration, which in turn is related to permeability of basalts. Saponite and some mixed-layer chlorite/smectite are the dominant phyllosilicates at the top of the transition zone. Chlorite, corrensite, and mixed-layer chlorite/corrensite occur mainly in the lower transition zone and upper levels of the sheeted dike zone. Chlorite, talc, and mixed-layer talc/chlorite are the major phyllosilicates in the sheeted dike zone, although replacement of talc or olivine by saponite is observed. The phyllosilicates consist of parallel or subparallel discrete packets of coherent layers with packet thicknesses generally ranging from < 100 A to a few hundred A. The packets of saponite layers are much smaller or less well defined than those of chlorite, corrensite and talc, indicating poorer crystallinity of saponite. By contrast, chlorite and talc from the lower transition zone and the sheeted dike zone occur in packets up to thousands of A thick. The Si/(Si + A1) ratio of these trioctahedral phyllosilicates increases and Fe/(Fe + Mg) decreases in the order chlorite, corrensite, saponite, and talc. These relations reflect optimal solid solution consistent with minimum misfit of articulated octahedral and tetrahedral sheets. Variations in composition of hydrothermal fluids and precursor minerals, especially in Si/(Si+A1) and Fe/(Fe+Mg) ratios, are thus important factors in controlling the parageneses of phyllosilicates. The phyllosilicates are generally well crystallized discrete phases, rather than mixed-layered phases, where they have been affected by relatively high fluid/rock ratios as in high-permeability basalts, in veins, or areas adjacent to veins. Intense alteration in basalts with high permeability (indicating high fluid/rock ratios) is characterized by pervasive albitization and zeolitization. Minimal alteration in the basalts without significant albitization and zeolitization is characterized by the occurrence of saponite ± mixed-layer chlorite/smectite in the low-temperature alteration zone, and mixed-layer chlorite/corrensite or mixed-layer talc/chlorite in the high-temperature alteration zone. Textural non-equilibrium for phyllosilicates is represented by mixed layering and poorly defined packets of partially incoherent layers. The approach to textural equilibrium was controlled largely by the availability of fluid or permeability.
Resumo:
El contrato territorial es una figura jurídica de aparición reciente destinada a promover el desarrollo sostenible del medio rural. Mediante él, se busca concretar el potencial de una explotación agropecuaria para proveer ciertas funciones sociales y ambientales (no tradicionales) tendientes a un desarrollo rural sostenible. A cambio de estas externalidades positivas, la explotación agropecuaria es compensada. En España, el contrato territorial ha surgido a la luz de dos ámbitos programáticos diferentes: al amparo de la legislación comunitaria europea y de las normas dictadas en su consecuencia a nivel nacional por un lado, y al abrigo de normas estrictamente de origen nacional, por el otro. Por el momento, sólo seis Comunidades Autónomas se han animado a implementarlo; sin embargo, de cara al nuevo Real Decreto 1336/2011 que regula las bases comunes del contrato territorial se espera mayor coherencia, eficiencia y utilización en el uso de esta herramienta
Resumo:
El estudio de la Iglesia colonial de la campaña de Buenos Aires ha sido abordado desde distintas perspectivas y aristas; desde el análisis de la recolección del diezmo hasta el funcionamiento de una estancia eclesiástica, desde el culto a la virgen de Luján hasta la conformación de cofradías. En este trabajo el tema es la parroquia de Magdalena y sus estrategias de subsistencia económicas en la zona de frontera. Intentado establecer a partir del análisis de los libros de fábrica algunas consideraciones en torno al manejo económico y social de la institución. Se señala la importancia que tiene el reducir la escala de análisis para realizar posibles estudios de comparación en toda la campaña de Buenos Aires y obtener una imagen particular que contribuya a la dilucidación de una imagen general.