686 resultados para Nitrobenzene hydrogenation
Resumo:
Partial hydrogenation of acrolein, the simplest alpha, beta-unsaturated aldehyde, is not only a model system to understand the selectivity in heterogeneous catalysis, but also technologically an important reaction. In this work, the reaction on Pt(211) and Au(211) surfaces is thoroughly investigated using density functional theory calculations. The formation routes of three partial hydrogenation products, namely propenol, propanal and enol, on both metals are studied. It is found that the pathway to produce enol is kinetically favoured on Pt while on Au the route of forming propenol is preferred. Our calculations also show that the propanal formation follows an indirect pathway on Pt(211). An energy decomposition method to analyze the barrier is utilized to understand the selectivities at Pt(211) and Au(211), which reveals that the interaction energies between the reactants involved in the transition states play a key role in determining the selectivity difference.
Resumo:
Hydrogenation reactions at transition metal surfaces comprise a key set of reactions in heterogeneous catalysis. In this paper, density functional theory methods are employed to take an in-depth look at this fundamental reaction type. The energetics of hydrogenation of atomic C, N, and O have been studied in some detail over low index Zr, Nb, Mo, Tc, Ru, Rh, and Pd surfaces. Detailed bonding analysis has also been employed to track carefully the chemical changes taking place during reaction. A number of interesting horizontal and vertical trends have been uncovered relating to reactant valency and metal d-band filling. A general correlation has also been found between the reaction barriers and the reaction potential energies. Moreover, when each reaction is considered independently, correlation has been found to improve with decreasing reactant valency. Bonding analysis has pointed to this being related to the relative position of the transition state along the reaction coordinate and has shown that as reactant valency decreases, the transition states become progressively later.
Resumo:
In the catalytic hydrogenation of hydrocarbons, subsurface hydrogen is known experimentally to be much more reactive than surface hydrogen. We use density functional theory to identify low-energy pathways for the hydrogenation of methyl adsorbed on Ni(111) by surface and subsurface hydrogen. The metastability of subsurface hydrogen with respect to chemisorbed hydrogen is mainly responsible for the low activation barrier for subsurface reactions. (C) 1999 American Institute of Physics.
Resumo:
Production of fatty alcohols through selective hydrogenation of fatty acids was studied over a 4% ReOx/TiO2 catalyst. Stearic acid was hydrogenated to octadecanol at temperatures and pressures between 180-200 degrees C and 2-4 MPa, with selectivity reaching 93%. A high yield of octadecanol was attributed to a strong adsorption of the acid compared to alcohol on the catalyst, which inhibits further alcohol transformation to alkanes. Low amounts (<7%) of alkanes (mainly octadecane) were formed during the conversion of stearic acid. However, it was found that the catalyst could be tuned for the production of alkanes. The reaction intermediates were octadecanal and stearyl stearate. Based on the reaction products analysis and catalyst characterization, a reaction mechanism and possible pathways were proposed.
Resumo:
The hydrogenation of 4-phenyl-2-butanone over Pt/TiO2 and Pt/SiO2 catalysts has been performed in a range of solvents and it has been observed that the solvent impacted on the selectivity of ketone and aromatic ring hydrogenation as well as the overall TOF of the titania catalyst with no solvent effect on selectivity observed using the silica supported catalyst where ring hydrogenation was favored. For the titania catalyst, alkanes were found to favor ring hydrogenation whereas aromatics and alcohols led to carbonyl hydrogenation. A two-site catalyst model is proposed whereby the aromatic ring hydrogenation occurs over the metal sites while carbonyl hydrogenation is thought to occur predominantly at interfacial sites, with oxygen vacancies in the titania support activating the carbonyl. The effect of the solvent on the hydrogenation reaction over the titania catalyst was related to competition for the active sites between solvent and 4-phenyl-2-butanone.
Resumo:
The rate and, more importantly, selectivity (ketone vs aromatic ring) of the hydrogenation of 4-phenyl-2-butanone over a Pt/TiO2 catalyst have been shown to vary with solvent. In this study, a fundamental kinetic model for this multi-phase reaction has been developed incorporating statistical analysis methods to strengthen the foundations of mechanistically sound kinetic models. A 2-site model was determined to be most appropriate, describing aromatic hydrogenation (postulated to be over a platinum site) and ketone hydrogenation (postulated to be at the platinum–titania interface). Solvent choice has little impact on the ketone hydrogenation rate constant but strongly impacts aromatic hydrogenation due to solvent-catalyst interaction. Reaction selectivity is also correlated to a fitted product adsorption constant parameter. The kinetic analysis method shown has demonstrated the role of solvents in influencing reactant adsorption and reaction selectivity.
Resumo:
A recent experimental investigation (Kim et al. J. Catal. 306 (2013) 146-154) on the selective hydrogenation of acetylene over Pd nanoparticles with different shapes concluded that Pd(100) showed higher activity and selectivity than Pd(111) for acetylene hydrogenation. However, our recent density functional calculations (Yang et al. J. Catal. 305 (2013) 264-276) observed that the clean Pd(111) surface should result in higher activity and ethylene selectivity compared with the clean Pd(100) surface for acetylene hydrogenation. In the current work, using density functional theory calculations, we find that Pd(100) in the carbide form gives rise to higher activity and selectivity than Pd(111) carbide. These results indicate that the catalyst surface is most likely in the carbide form under the experimental reaction conditions. Furthermore, the adsorption energies of hydrogen atoms as a function of the hydrogen coverage at the surface and subsurface sites over Pd(100) are compared with those over Pd(111), and it is found that the adsorption of hydrogen atoms is always less favoured on Pd(100) over the whole coverage range. This suggests that the Pd(100) hydride surface will be less stable than the Pd(111) hydride surface, which is also in accordance with the experimental results reported.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Iridium complexes with bidentate P,N ligands represent a class of catalysts that significantly expand the application range of asymmetric hydrogenation. New substrate classes, for which there have previously been no suitable catalysts, can now be efficiently hydrogenated in high conversion and enantioselectivity. These substrates are often of synthetic importance, thus iridium catalysis represents a significant advance in the field of asymmetric catalysis. Planar chiral ferrocenyl aminophosphine ligands in which both heteroatoms were directly bound to the cyclopentadienyl ring were prepared by BF3-activated lithiationsubstitution in the presence of a chiral diamine in 49-59% yield and 75-85% enantiomeric excess. Some of these ligands were recrystallized to enantiomeric purity via ammonium fluoroborate salt formation of the phosphine sulfide. A crystal structure of one of these compounds was obtained and features an intramolecular hydrogen bond between the nitrogen, hydrogen, and sulfur atoms. Neutralization, followed by desulfurization, provided the free ligands in enantiomeric purity. Iridium complexes with these ligands were formed via reaction with [Ir(COD)Clh followed by anion exchange with NaBArF. These complexes were successfully applied in homogeneous hydrogenation of several prochiral substrates, providing products in up to 92% enantiomeric excess. Variation of the dimethyl amino group to a pyrrolidine group had a negative effect on the selectivity of hydrogenation. Variation of the substituents on phosphorus to bulkier ortho-tolyl groups had a positive effect, while variation to the more electron rich dicyclohexyl phosphine had a negative effect on selectivity.
Resumo:
This thesis describes the synthesis and use of an N-substituted ferrocene bearing a proline-derived chiral directing group and diastereoselective lithiation-electrophile quench of the pro-Sp hydrogen of the ferrocene to give planar chiral products in >95:5 dr. The auxiliary group is found to be stable to lithium bases of types RLi and R2NLi giving the same diastereoselectivity. The anti- epimer of the previously mentioned syn auxiliary induces lithiation of pro Rp rather than pro Sp hydrogen in >95:5 dr. Upon electrophile quench and elimination, the enantiomer of the syn-derived planar chiral imidazolone is obtained. Hence, this method provides a practical way to prepare planar chiral enantiomers in this series without the use of a more expensive D-proline derived starting material. The syn and anti epimers have β, γ-stereogenic centers and the origin of stereoselectivity in lithiation appears to be driven by the conformational bias exerted by the β-silyloxy moiety in each chiral auxiliary. In the thesis, this conclusion is supported using insensitivity of lithiation selectivity to the bulkiness of the base, comparison of enantiomers, deuteration experiments, nOe difference studies and computational modeling of the ground states and lithiation transition states for both substrates. The products are then converted to ligand precursors to make iridium and rhodium complexes. Among them, one of the cationic iridium complex is found to be effective in the asymmetric hydrogenation of 2-substituted quinolines with enantioselectivities up to 80% at pressures as low as 5 atm.
Resumo:
The thesis deals with studies on the synthesis, characterisation and catalytic applications of some new transition metal complexes of the Schiff bases derived from 3-hydroxyquinoxaline 2-carboxaldehyde.. Schiff bases which are considered as ‘privileged ligands’ have the ability to stabilize different metals in different oxidation states and thus regulate the performance of metals in a large variety of catalytic transformations. The catalytic activity of the Schiff base complexes is highly dependant on the environment about the metal center and their conformational flexibility. Therefore it is to be expected that the introduction of bulky substituents near the coordination sites might lead to low symmetry complexes with enhanced catalytic properties. With this view new transition metal complexes of Schiff bases derived from 3-hydroxyquinoxaline-2-carboxaldehyde have been synthesised. These Schiff bases have more basic donor nitrogen atoms and the presence of the quinoxaline ring may be presumed to build a favourable topography and electronic environment in the immediate coordination sphere of the metal. The aldehyde was condensed with amines 1,8-diaminonaphthalene, 2,3-diaminomaleonitrile, 1,2-diaminocyclohexane, 2-aminophenol and 4-aminoantipyrine to give the respective Schiff bases. The oxovanadium(IV), copper(II) and ruthenium(II)complexes of these Schiff bases were synthesised and characterised. All the oxovanadium(IV) complexes have binuclear structure with a square pyramidal geometry. Ruthenium and copper form mononuclear complexes with the Schiff base derived from 4- aminoantipyrine while binuclear square planar complexes are formed with the other Schiff bases. The catalytic activity of the copper complexes was evaluated in the hydroxylation of phenol with hydrogen peroxide as oxidant. Catechol and hydroquinone are the major products. Catalytic properties of the oxovanadium(IV) complexes were evaluated in the oxidation of cyclohexene with hydrogen peroxide as the oxidant. Here allylic oxidation products rather than epoxides are formed as the major products. The ruthenium(II) complexes are found to be effective catalysts for the hydrogenation of benzene and toluene. The kinetics of hydrogenation was studied and a suitable mechanism has been proposed.
Resumo:
Asymmetric catalysis is of paramount importance in organic synthesis and, in current practice, is achieved by means of homogeneous catalysts. The ability to catalyze such reactions heterogeneously would have a major impact both in the research laboratory and in the production of fine chemicals and pharmaceuticals, yet heterogeneous asymmetric hydrogenation of C═C bonds remains hardly explored. Very recently, we demonstrated how chiral ligands that anchor robustly to the surface of Pd nanoparticles promote asymmetric catalytic hydrogenation: ligand rigidity and stereochemistry emerged as key factors. Here, we address a complementary question: how does the enone reactant adsorb on the metal surface, and what implications does this have for the enantiodifferentiating interaction with the surface-tethered chiral modifiers? A reaction model is proposed, which correctly predicts the identity of the enantiomer experimentally observed in excess.
Resumo:
The adsorption and hydrogenation of acrolein on the Ag(111) surface has been investigated by high resolution synchrotron XPS, NEXAFS, and temperature programmed reaction. The molecule adsorbs intact at all coverages and its adsorption geometry is critically important in determining chemoselectivity toward the formation of allyl alcohol, the desired but thermodynamically disfavored product. In the absence of hydrogen adatoms (H(a)), acrolein lies almost parallel to the metal surface; high coverages force the C=C bond to tilt markedly, likely rendering it less vulnerable toward reaction with hydrogen adatoms. Reaction with coadsorbed H(a) yields allyl alcohol, propionaldehyde, and propanol, consistent with the behavior of practical dispersed Ag catalysts operated at atmospheric pressure: formation of all three hydrogenation products is surface reaction rate limited. Overall chemoselectivity is strongly influenced by secondary reactions of allyl alcohol. At low H(a) coverages, the C=C bond in the newly formed allyl alcohol molecule is strongly tilted with respect to the surface, rendering it immune to attack by H(a) and leading to desorption of the unsaturated alcohol. In contrast with this, at high H(a) coverages, the C=C bond in allyl alcohol lies almost parallel to the surface, undergoes hydrogenation by H(a), and the saturated alcohol (propanol) desorbs.
Resumo:
In situ synthesis and testing of Ru and Pd nanoparticles as catalysts in the presence of ammonium perfluorohydrocarbo-carboxylate surfactant in supercritical carbon dioxide were carried out in a stainless steel batch reactor at 40 degrees C over a pressure range of 80-150 bar CO2/H-2. Direct Visualization of the formation of a supercritical phase at above 80 bar, followed by the formation of homogeneous microemulsions containing dispersed Ru nanoparticles and Pd nanoparticles in scCO(2) at above 95-100 bar, were conducted through a sapphire window reactor using a W-0 (molar water to surfactant ratio) of 30. The synthesised RU and Pd nanoparticles showed interesting product distributions in the selective hydrogenation of organic molecules, depending critically oil the density and polarity of the fluid (which ill turn depends on the pressure applied). Thus, selective hydrogenation of the citral molecule, which contains three reducible groups (aldehydes and double bonds at the 23 and 6,7 positions), is feasible Lis a chemical probe. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Homogeneous dispersion of microemulsion containing palladium nanoparticles in scCO(2) is, for the first time, observed via sapphire window reactor and these particles show an unusual reluctance for double bond hydrogenation of citral aldehyde at hydrophobic end rather than hydrophilic end (high regioselectivity) owing to the unique micelle environment in supercritical carbon dioxide that guide a head-on attack of the molecule.