975 resultados para Niobium.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coumarin is a natural active compound that can be found in many plants. The coumarins have many properties such as bronchodilator, anti-inflammatory, antioxidant, anticoagulant, antibiotics, immunomodulatory, antimicrobial and antiviral, thus, they are widely used in medical applications. More recently the coumarin derivatives have attracted the interest of many research groups in the field of new materials, for example the possibility of their use as sensitizers in dye-sensitized solar cells (DSSC) and lasers. The MCRs are defined as a process in which three or more reactants are combined in the same reaction pot, resulting in products with good structural complexity a single step, in addition to economy of atoms and selectivity and is a very important feature in modern synthetic methodology. In this work we investigated the use of niobium pentachloride as catalyst of the multicomponent reactions between phenolic derivatives, various aromatic aldehydes and β-diester derivatives in the synthesis of 4-aryl-3,4-dihydrocoumarin derivatives. The reactions were carried out at room temperature, under inert atmosphere (N2), using dichloromethane anhydrous (CH2 Cl2) as solvent, with a reaction time of most 120 hours. The products were isolated by column chromatography on silica gel and submitted to spectrometric and spectroscopic analysis. The results show that NbCl5 is an excellent agent for promoting the synthesis of 4-aryl-3,4-dihydrocoumarin derivatives through multicomponent reactions, obtaining yields varying from 45 to 95%

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the physicochemical properties and bioactivity of two formulations of calcium silicate-based cements containing additives (CSCM) or resin (CSCR), associated with radiopacifying agents zirconium oxide (ZrO2) and niobium oxide (Nb2O5) as micro- and nanoparticles; calcium tungstate (CaWO4); and bismuth oxide (Bi2O3). MTA Angelus was used as control. Methods. Surface features and bioactivity were evaluated by scanning electron microscopy and the chemical composition by energy dispersive X-ray spectrometry (EDS-X). Results. CSCM and CSCR presented larger particle sizes than MTA. Hydroxyapatite deposits were found on the surface of some materials, especially when associated with the radiopacifier with ZrO2 nanoparticles. All the cements presented calcium, silicon, and aluminum in their composition. Conclusion. Both calcium silicate-based cements presented composition and bioactivity similar to MTA when associated with the radiopacifiers evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of the investigation on Solution Heat Treatment of Plasma Nitrided (SHTPN) precipitation-hardened steel 15-5PH are presented. The layers have been obtained by the plasma nitriding process followed by solution heat treatment at different temperatures. The influence of the solution heat treatment after nitriding on the dissolution process of the nitrided layer has been considered. The nitrided layers were studied by scanning electron microscopy, X-ray microanalysis (EDX), and X-Ray diffraction. Micro-hardness tests of the nitrided layers and solubilized nitrided layers have been carried out and interpreted by considering the processing conditions. It was found that high nitrogen austenitic cases could be obtained after SHTPN of martensitic precipitation-hardened steel (15-5PH). When Solution Heat Treatment (SHT) was performed at 1100 °C, some precipitates were observed. The amount of precipitates significantly reduced when the temperature increased. The EDX microanalysis indicated that the precipitate may be chromium niobium nitride. When the precipitation on the austenite phase occurred in small amount, the corrosion resistance increased in SHTPN specimens and the pit nucleation potential also increased. The best corrosion result occurred for SHT at 1200 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ti-15Mo-xNb system integrates a new class of titanium alloys without the presence of aluminum and vanadium, which exhibit cytotoxicity, and that have low elasticity modulus values (below 100 GPa). This occurs because these alloys have a beta structure, which is very attractive for use as biomaterials. In addition, Brazil has about 90% of the world’s resources of niobium, which is very important economically. It strategically invests in research on the development and processing of alloys containing this element. In this paper, a study of the influence of heat treatments on the structure and microstructure of the alloys of a Ti-15Mo-xNb system is presented. The results showed grain grown with heat treatment and elongated and irregular grains after lamination due to this processing. After quenching, there were no changes in the microstructure in relation to heat-treated and laminated conditions. These results corroborate the x-ray diffraction results, which showed the predominance of the β phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In heterogeneous catalysis, numerous elements such as titanium and iron have been studied as nanoscale catalysts, but little is known about the use of niobium in nanocatalysis. The nanostructured particles have intrinsic and different physicochemical characteristics with great potential for use in industrial scale. Brazil having the largest known worldwide niobium reserve has the great challenge of creating pioneering technologies with the metal. Biodiesel is an alternative fuel and renewable substitute for regular diesel. Being biodegradable, non-toxic and have CO2 emissions lower than regular diesel, it contributes to the environment and to the independence from oil. The aim of this work was initially synthesize nanoscale particles of niobium pentoxide (Nanospheres, nanorods, nanofibers, nanocubes) from the sol-gel technique. The characterization of different nanoscale structures obtained was performed using different analytical techniques such as x-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The synthesized nanometer niobium oxide will be used as a heterogeneous catalyst in biodiesel synthesis from commercial soybean oil, checking in detail what the effect of morphology is presented (Nanospheres, nanorods, nanofibers, nanocubes) in the yield of biodiesel synthesis, comparing these results with those already described in literature for the amorphous niobium oxide and other oxide catalysts. The biodiesel obtained was characterized by gas chromatography system equipped with a FID detector