983 resultados para Nickel-titanium alloys


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fatigue, corrosion and wear resistance are important parameters in aircraft components development as landing gear. High strength/weight ratio and effective corrosion resistance make of titanium alloys an alternative choice to replace steel and aluminum alloys. However, titanium alloys have poor tribological properties, which reduce devices performance under friction. PVD coatings tribological systems has been increased due to their attractive mechanical properties as low environmental impact, low friction coefficient, low wear rate and hardness up to 2000 HV.In this study the influence of TiN deposited by PVD on the fatigue strength of Ti-6Al-4V alloy was evaluated. Comparison of fatigue strength of coated specimens and base material shows also a decrease when parts are coated. It was observed that the influence is more significant in high cycle fatigue tests. Scanning electron microscopy technique (SEM) was used to observe crack origin sites and fracture features. (C) 2010 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ti-6Al-7Nb alloys are being evaluated for biomedical applications, in substitution of the more conventional Ti-6Al-7V. Both types of alloys present a microstructure containing the alpha and the beta phases, which result in good compromise for mechanical applications. In the present work Ti-6Al-7Nb alloys were processed by High Pressure Torsion (HPT), varying the number of revolutions and thus the total imposed strain. X-Ray Diffraction (XRD) results revealed the formation of different crystallographic textures in samples subjected to HPT. Microhardness distribution, across the diameters of the disks, is rather homogeneous for all samples, with higher values for those subjected to 03 and 05 turns. Transmission electron microscopy (TEM) micrographs have showed that an ultra-fine grained microstructure was obtained in all the samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Commercially pure titanium alloys are currently used as metallic biomaterials in implantology. Corrosion phenomena appear to play a decisive role in metallic implant long-term behavior. Thus, the goal of this study was to examine the genotoxic potential of corrosion eluates obtained from dental implants using Chinese ovary hamster cells in vitro by the single-cell gel (comet) assay. This technique detects deoxyribonucleic acid strand breaks in individual cells in alkaline conditions.Materials and Methods: the materials tested included 3 dental implants commercially available. Each of the tested materials was corroded in a solution consisting of equal amounts of acetic acid and sodium chloride (0.1 M) for 1, 3, 7, 14, and 21 days. The Chinese ovary hamster cultures were then exposed to all corrosion eluates obtained from endosseous dental implants for 30 minutes at 37 degrees C.Results: None of the eluates was found to exhibit genotoxicity, regardless of the type of dental implant used.Conclusion: the results suggest that all dental implants tested in this study did not induce deoxyribonucleic acid breakage as depicted by the single-cell gel (comet) assay.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: To assess orthodontic intrusion effects on periodontal tissues in dogs' pre-molars with class III furcations treated with open flap debridement (OFD) or with guided tissue regeneration (GTR) associated to bone autograft (BA).Material and Methods: Class III furcations were created in the pre-molars of seven mongrel dogs. After 75 days, teeth were randomly treated with OFD or GTR/BA. After 1 month, metallic crowns were assembled on pre-molars and connected apically to mini-implants by nickel-titanium springs. Teeth were randomly assigned to orthodontic intrusion (OFD+I and GTR/BA+I) groups or no movement (OFD and GTR/BA) groups. Dogs were sacrificed after 3 months of movement and 1 month retention.Results: All class III furcations were closed or reduced to class II or I in the intrusion groups, while 50% of the lesions in non-moved teeth remained unchanged. Intruded teeth presented higher probing depth and lower gingival marginal level than non-moved teeth (p < 0.01). Clinical attachment gain was reduced in the intrusion groups by the end of retention (p < 0.05). OFD+I presented smaller soft tissue area and larger bone tissue area than other groups (p < 0.05).Conclusion: Orthodontic intrusion with anchorage via mini-implants improved the healing of class III furcation defects after OFD in dogs. GTR/BA impaired those results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Em geral, a função de um modelo de impedância para processos de eletrodo simples é deduzida de um modelo elétrico equivalente, denominado circuito de Randles. Neste trabalho estudou-se a generalização dessa função, mediante a introdução de um parâmetro não-elétrico, relacionado com a flexibilidade do ângulo de fase e da magnitude. A função foi ajustada às medidas experimentais de impedância obtidas de um sistema constituído de uma liga Ti-10%Al (m/m) em solução de cloreto de sódio 0,9%, variando-se a amplitude de perturbação. Verificou-se que a função generalizada foi adequada para descrever a impedância do sistema analisado, reduzindo as distorções entre a curva experimental e a curva teórica. Além disso, os melhores resultados foram obtidos para sinais de perturbação do sistema com amplitude igual a 10 mV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium alloys are hoped to be used much more for applications as implant materials in the medical and dental fields because of their basic properties, such as biocompatibility, corrosion resistance and specific strength compared with other metallic implant materials. Thus, the Ti-6Al-7Nb alloy that has recently been developed for biomedical use, that is, primarily developed for orthopaedic use, is to be studied in this paper, for application in dental implants. The biocompatibility test in vivo was carried out in dogs and the osseointegration was verified through histological analysis of the samples of the Ti-6Al-7Nb alloy with and without hydroxyapatite coating that were inserted in the alveoli. Within the controlled conditions the samples did not show any toxic effects on the cells. (C) 2001 Kluwer Academic Publishers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitrogen implantation into Ti alloys at higher temperatures improves their mechanical and corrosion resistance properties by forming a thicker nitride layer. In this paper, two different sets of Ti-6Al-4V samples were plasma immersion ion implantation (PIII)-treated using nitrogen plasma, varying the treatment time from 30 to 150 min (800 degrees C) and the process temperature from 400 degrees C to 800 degrees C (t = 60 min). Nanoindentation measurements of the PIII-treated samples at 800 C during 150 min showed the highest hardness value, 24 GPa, which is about four times bigger than untreated sample hardness. The N penetration at these conditions reached approximately 150 nm as analyzed by Auger spectroscopy. on the other hand, the lowest passive current density (3 x 10(-7) A. cm(-2)) was obtained for a PIII-treated sample during 30 min at higher temperature (800 degrees C). The corrosion resistance of this sample is almost the same as for the untreated specimen. Corrosion behavior evidenced that in strong oxidizing media, all PIII-treated samples are more corrosion resistant than the untreated one. PIII processing at higher temperatures promotes smoothing of the sample surface as observed by scanning electron microscopy (SEM). Grazing incidence X-ray diffraction analyses of the untreated samples identified the two typical Ti phases, Ti alpha and Ti beta. After the implantation, Ti2N and TiO2 phases were also detected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium alloy parts are ideally suited for advanced aerospace systems and surgical implants because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent corrosion resistance. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy, due to its lower modulus of elasticity and high biocompatibility, is a promising candidate for surgical and aerospace applications. Samples were produced by mixing of initial metallic hydride powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 700 and 1500 degrees C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microbardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like a structure and intergranular P. A few remaining pores are still found, and density above 97% for specimens sintered at 1500 degrees C is reached. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the chemical structure, the microstructure and the surface morphology of two non-ferrous materials used in dental implants (Ti-6Al-4V and Co-Cr-Mo) were studied. This was done by chemical analysis, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), and strength measurements (HV). Metallographic studies reveal that titanium alloy surface present a fine granular binary phase structure, while cobalt alloy present cast dendrite structures with an intense precipitation of carbides. To correlate the macro and microstructure with the mechanical behavior of the material, microhardness measurements were performed. Using the Vickers hardening method, the Ti-6Al-4V alloy yielded strength mean values smaller than the Co-Cr-Mo alloy. Their values are associated to the chemical composition and to the microstructural distribution of these materials. The Ti-6Al-4V alloy presents hardness similar to dental enamel, which suggests better performance as dental implant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Austenitic stainless steel presents phase changes caused by heat treatment and welding processes. Because it represents a problem in the design of high-homogeneity magnets, we have been studying the magnetic properties of Ti alloys for their use instead of stainless steel as structural material for superconducting magnet construction. In this work, we present the comparative study of the influence of magnetic properties of steel and Ti alloys on the magnetic-field homogeneity of a superconducting coil through numerical calculation using the measured magnetic properties. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium and its alloys provide high strength-to-weight ratios, good fatigue strength and increased corrosion resistance compared with others materials. Its acceptance in aerospace has been limited by costs considerations such as high cost of raw material, high buy-to-fly ratios and expensive machining operations. Significant cost reductions can be obtained by vacuum sintering and powder metallurgy (P/M) techniques by producing near net shapes and consequently minimizing material waste and machining time. The Ti 35Nb alloy exhibit a low modulus of elasticity. Stemming from the unique combination of high strength, low modulus of elasticity and low density, this alloy is intrinsically more resistant to shock and explosion damages than most other engineering materials. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900 and 1600 °C, in vacuum. Sintering behavior was studied by means of dilatometry. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Density was measured by Archimedes method. Copyright © 2004 Society of Automotive Engineers, Inc.