978 resultados para Neural stimulation.
Resumo:
Advances in neural network language models have demonstrated that these models can effectively learn representations of words meaning. In this paper, we explore a variation of neural language models that can learn on concepts taken from structured ontologies and extracted from free-text, rather than directly from terms in free-text. This model is employed for the task of measuring semantic similarity between medical concepts, a task that is central to a number of techniques in medical informatics and information retrieval. The model is built with two medical corpora (journal abstracts and patient records) and empirically validated on two ground-truth datasets of human-judged concept pairs assessed by medical professionals. Empirically, our approach correlates closely with expert human assessors ($\approx$ 0.9) and outperforms a number of state-of-the-art benchmarks for medical semantic similarity. The demonstrated superiority of this model for providing an effective semantic similarity measure is promising in that this may translate into effectiveness gains for techniques in medical information retrieval and medical informatics (e.g., query expansion and literature-based discovery).
Resumo:
Neural interface devices and the melding of mind and machine, challenge the law in determining where civil liability for injury, damage or loss should lie. The ability of the human mind to instruct and control these devices means that in a negligence action against a person with a neural interface device, determining the standard of care owed by him or her will be of paramount importance. This article considers some of the factors that may influence the court’s determination of the appropriate standard of care to be applied in this situation, leading to the conclusion that a new standard of care might evolve.
Resumo:
We investigated the neural correlates of semantic priming by using event-related fMRI to record blood oxygen level dependent (BOLD) responses while participants performed speeded lexical decisions (word/nonword) on visually presented related versus unrelated prime-target pairs. A long stimulus onset asynchrony of 1000 ms was employed, which allowed for increased controlled processing and selective frequency-based ambiguity priming. Conditions included an ambiguous word prime (e.g. bank) and a target related to its dominant (e.g. money) or subordinate meaning (e.g. river). Compared to an unrelated condition, primed dominant targets were associated with increased activity in the LIFG, the right anterior cingulate and superior temporal gyrus, suggesting postlexical semantic integrative mechanisms, while increased right supramarginal activity for the unrelated condition was consistent with expectancy based priming. Subordinate targets were not primed and were associated with reduced activity primarily in occipitotemporal regions associated with word recognition, which may be consistent with frequency-based meaning suppression. These findings provide new insights into the neural substrates of semantic priming and the functional-anatomic correlates of lexical ambiguity suppression mechanisms.
Resumo:
Our aim was to make a quantitative comparison of the response of the different visual cortical areas to selective stimulation of the two different cone-opponent pathways [long- and medium-wavelength (L/M)- and short-wavelength (S)-cone-opponent] and the achromatic pathway under equivalent conditions. The appropriate stimulus-contrast metric for the comparison of colour and achromatic sensitivity is unknown, however, and so a secondary aim was to investigate whether equivalent fMRI responses of each cortical area are predicted by stimulus contrast matched in multiples of detection threshold that approximately equates for visibility, or direct (cone) contrast matches in which psychophysical sensitivity is uncorrected. We found that the fMRI response across the two colour and achromatic pathways is not well predicted by threshold-scaled stimuli (perceptual visibility) but is better predicted by cone contrast, particularly for area V1. Our results show that the early visual areas (V1, V2, V3, VP and hV4) all have robust responses to colour. No area showed an overall colour preference, however, until anterior to V4 where we found a ventral occipital region that has a significant preference for chromatic stimuli, indicating a functional distinction from earlier areas. We found that all of these areas have a surprisingly strong response to S-cone stimuli, at least as great as the L/M response, suggesting a relative enhancement of the S-cone cortical signal. We also identified two areas (V3A and hMT+) with a significant preference for achromatic over chromatic stimuli, indicating a functional grouping into a dorsal pathway with a strong magnocellular input.
Resumo:
Naming impairments in aphasia are typically targeted using semantic and/or phonologically based tasks. However, it is not known whether these treatments have different neural mechanisms. Eight participants with aphasia received twelve treatment sessions using an alternating treatment design, with fMRI scans pre- and post-treatment. Half the sessions employed Phonological Components Analysis (PCA), and half the sessions employed Semantic Feature Analysis (SFA). Pre-treatment activity in the left caudate correlated with greater immediate treatment success for items treated with SFA, whereas recruitment of the left supramarginal gyrus and right precuneus post-treatment correlated with greater immediate treatment success for items treated with PCA. The results support previous studies that have found greater treatment outcome to be associated with activity in predominantly left hemisphere regions, and suggest that different mechanisms may be engaged dependent on the type of treatment employed.
Resumo:
The latest generation of Deep Convolutional Neural Networks (DCNN) have dramatically advanced challenging computer vision tasks, especially in object detection and object classification, achieving state-of-the-art performance in several computer vision tasks including text recognition, sign recognition, face recognition and scene understanding. The depth of these supervised networks has enabled learning deeper and hierarchical representation of features. In parallel, unsupervised deep learning such as Convolutional Deep Belief Network (CDBN) has also achieved state-of-the-art in many computer vision tasks. However, there is very limited research on jointly exploiting the strength of these two approaches. In this paper, we investigate the learning capability of both methods. We compare the output of individual layers and show that many learnt filters and outputs of the corresponding level layer are almost similar for both approaches. Stacking the DCNN on top of unsupervised layers or replacing layers in the DCNN with the corresponding learnt layers in the CDBN can improve the recognition/classification accuracy and training computational expense. We demonstrate the validity of the proposal on ImageNet dataset.
Resumo:
Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP, Salmonella enteritidis) during postnatal day (PND) 3 and 5 displayed enhanced formalin-induced flinching but not licking following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal periaqueductal grey (DPAG) as well as rostral and caudal axes of the ventrolateral PAG (VLPAG). Formalin injections were associated with increased Fos-protein labelling in lateral habenula (LHb) as compared to medial habenula (MHb), however the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a possible mediator of this process
Resumo:
One of the promising strategies for neural repair therapies is the transplantation of olfactory ensheathing cells (OECs) which are the glial cells of the olfactory system. We evaluated the effects of curcumin on the behaviour of mouse OECs to determine if it could be of use to further enhance the therapeutic potential of OECs. Curcumin, a natural polyphenol compound found in the spice turmeric, is known for its anti-cancer properties at doses over 10 µM, and often at 50 µM, and it exerts its effects on cancer cells in part by activation of MAP kinases. In contrast, we found that low-dose curcumin (0.5 µM) applied to OECs strikingly modulated the dynamic morphology, increased the rate of migration by up to 4-fold, and promoted significant proliferation of the OECs. Most dramatically, low-dose curcumin stimulated a 10-fold increase in the phagocytic activity of OECs. All of these potently stimulated behavioural characteristics of OECs are favourable for neural repair therapies. Importantly, low-dose curcumin gave a transient activation of p38 kinases, which is in contrast to the high dose curcumin effects on cancer cells in which these MAP kinases tend to undergo prolonged activation. Low-dose curcumin mediated effects on OECs demonstrate cell-type specific stimulation of p38 and ERK kinases. These results constitute the first evidence that low-dose curcumin can modulate the behaviour of olfactory glia into a phenotype potentially more favourable for neural repair and thereby improve the therapeutic use of OECs for neural repair therapies
Resumo:
STUDY QUESTION Can the number of oocytes retrieved in IVF cycles be predictive of the age at menopause? SUMMARY ANSWER The number of retrieved oocytes can be used as an indirect assessment of the extent of ovarian reserve to provide information on the duration of the reproductive life span in women of different ages. WHAT IS KNOWN ALREADY Menopause is determined by the exhaustion of the ovarian follicular pool. Ovarian reserve is the main factor influencing ovarian response in IVF cycles. As a consequence the response to ovarian stimulation with the administration of gonadotrophins in IVF treatment may be informative about the age at menopause. STUDY DESIGN, SIZE, DURATION In the present cross-sectional study, participants were 1585 infertile women from an IVF clinic and 2635 menopausal women from a more general population. PARTICIPANTS/MATERIALS, SETTING, METHODS For all infertile women, the response to ovarian stimulation with gonadotrophins was recorded. For menopausal women, relevant demographic characteristics were available for the analysis. MAIN RESULTS AND THE ROLE OF CHANCE A cubic function described the relationship between mean numbers of oocytes and age, with all terms being statistically significant. From the estimated residual distribution of the actual number of oocytes about this mean, a distribution of the age when there would be no oocytes retrieved following ovarian stimulation was derived. This was compared with the distribution of the age at menopause from the menopausal women, showing that menopause occurred about a year later. LIMITATIONS, REASONS FOR CAUTION The retrieved oocyte data were from infertile women, while the menopausal ages were from a more general population. WIDER IMPLICATIONS OF THE FINDINGS In the present study, we have shown some similarity between the distributions of the age when no retrieved oocytes can be expected after ovarian stimulation and the age at menopause. For a given age, the lower the ovarian reserve, the lower the number of retrieved oocytes would be and the earlier the age that menopause would occur.
Resumo:
The Artificial Neural Networks (ANNs) are being used to solve a variety of problems in pattern recognition, robotic control, VLSI CAD and other areas. In most of these applications, a speedy response from the ANNs is imperative. However, ANNs comprise a large number of artificial neurons, and a massive interconnection network among them. Hence, implementation of these ANNs involves execution of computer-intensive operations. The usage of multiprocessor systems therefore becomes necessary. In this article, we have presented the implementation of ART1 and ART2 ANNs on ring and mesh architectures. The overall system design and implementation aspects are presented. The performance of the algorithm on ring, 2-dimensional mesh and n-dimensional mesh topologies is presented. The parallel algorithm presented for implementation of ART1 is not specific to any particular architecture. The parallel algorithm for ARTE is more suitable for a ring architecture.
Resumo:
This paper presents an off-line (finite time interval) and on-line learning direct adaptive neural controller for an unstable helicopter. The neural controller is designed to track pitch rate command signal generated using the reference model. A helicopter having a soft inplane four-bladed hingeless main rotor and a four-bladed tail rotor with conventional mechanical controls is used for the simulation studies. For the simulation study, a linearized helicopter model at different straight and level flight conditions is considered. A neural network with a linear filter architecture trained using backpropagation through time is used to approximate the control law. The controller network parameters are adapted using updated rules Lyapunov synthesis. The off-line trained (for finite time interval) network provides the necessary stability and tracking performance. The on-line learning is used to adapt the network under varying flight conditions. The on-line learning ability is demonstrated through parameter uncertainties. The performance of the proposed direct adaptive neural controller (DANC) is compared with feedback error learning neural controller (FENC).
Resumo:
In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.
Resumo:
Neural data are inevitably contaminated by noise. When such noisy data are subjected to statistical analysis, misleading conclusions can be reached. Here we attempt to address this problem by applying a state-space smoothing method, based on the combined use of the Kalman filter theory and the Expectation–Maximization algorithm, to denoise two datasets of local field potentials recorded from monkeys performing a visuomotor task. For the first dataset, it was found that the analysis of the high gamma band (60–90 Hz) neural activity in the prefrontal cortex is highly susceptible to the effect of noise, and denoising leads to markedly improved results that were physiologically interpretable. For the second dataset, Granger causality between primary motor and primary somatosensory cortices was not consistent across two monkeys and the effect of noise was suspected. After denoising, the discrepancy between the two subjects was significantly reduced.
Resumo:
An important question in the host-finding behaviour of a polyphagous insect is whether the insect recognizes a suite or template of chemicals that are common to many plants? To answer this question, headspace volatiles of a subset of commonly used host plants (pigeon pea, tobacco, cotton and bean) and nonhost plants (lantana and oleander) of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) are screened by gas chromatography (GC) linked to a mated female H. armigera electroantennograph (EAG). In the present study, pigeon pea is postulated to be a primary host plant of the insect, for comparison of the EAG responses across the test plants. EAG responses for pigeon pea volatiles are also compared between females of different physiological status (virgin and mated females) and the sexes. Eight electrophysiologically active compounds in pigeon pea headspace are identified in relatively high concentrations using GC linked to mass spectrometry (GC-MS). These comprised three green leaf volatiles [(2E)-hexenal, (3Z)-hexenylacetate and (3Z)-hexenyl-2-methylbutyrate] and five monoterpenes (α-pinene, β-myrcene, limonene, E-β-ocimene and linalool). Other tested host plants have a smaller subset of these electrophysiologically active compounds and even the nonhost plants contain some of these compounds, all at relatively lower concentrations than pigeon pea. The physiological status or sex of the moths has no effect on the responses for these identified compounds. The present study demonstrates how some host plants can be primary targets for moths that are searching for hosts whereas the other host plants are incidental or secondary targets.