676 resultados para Net reproductive rate


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50-100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals (Acropora palmata and Porites astreoides) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The response of respiration, photosynthesis, and calcification to elevated pCO2 and temperature was investigated in isolation and in combination in the Mediterranean crustose coralline alga Lithophyllum cabiochae. Algae were maintained in aquaria during 1 year at near-ambient conditions of irradiance, at ambient or elevated temperature (+3 °C), and at ambient (ca. 400 µatm) or elevated pCO2 (ca. 700 µatm). Respiration, photosynthesis, and net calcification showed a strong seasonal pattern following the seasonal variations of temperature and irradiance, with higher rates in summer than in winter. Respiration was unaffected by pCO2 but showed a general trend of increase at elevated temperature at all seasons, except in summer under elevated pCO2. Conversely, photosynthesis was strongly affected by pCO2 with a decline under elevated pCO2 in summer, autumn, and winter. In particular, photosynthetic efficiency was reduced under elevated pCO2. Net calcification showed different responses depending on the season. In summer, net calcification increased with rising temperature under ambient pCO2 but decreased with rising temperature under elevated pCO2. Surprisingly, the highest rates in summer were found under elevated pCO2 and ambient temperature. In autumn, winter, and spring, net calcification exhibited a positive or no response at elevated temperature but was unaffected by pCO2. The rate of calcification of L. cabiochae was thus maintained or even enhanced under increased pCO2. However, there is likely a trade-off with other physiological processes. For example, photosynthesis declines in response to increased pCO2 under ambient irradiance. The present study reports only on the physiological response of healthy specimens to ocean warming and acidification, however, these environmental changes may affect the vulnerability of coralline algae to other stresses such as pathogens and necroses that can cause major dissolution, which would have critical consequence for the sustainability of coralligenous habitats and the budgets of carbon and calcium carbonate in coastal Mediterranean ecosystems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The combination of global and local stressors is leading to a decline in coral reef health globally. In the case of eutrophication, increased concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) are largely attributed to local land use changes. From the global perspective, increased atmospheric CO2 levels are not only contributing to global warming but also ocean acidification (OA). Both eutrophication and OA have serious implications for calcium carbonate production and dissolution among calcifying organisms. In particular, benthic foraminifera precipitate the most soluble form of mineral calcium carbonate (high-Mg calcite), potentially making them more sensitive to dissolution. In this study, a manipulative orthogonal two-factor experiment was conducted to test the effects of dissolved inorganic nutrients and OA on the growth, respiration and photophysiology of the large photosymbiont-bearing benthic foraminifer, Marginopora rossi. This study found the growth rate of M. rossi was inhibited by the interaction of eutrophication and acidification. The relationship between M. rossi and its photosymbionts became destabilized due to the photosymbiont's release from nutrient limitation in the nitrate-enriched treatment, as shown by an increase in zooxanthellae cells per host surface area. Foraminifers from the OA treatments had an increased amount of Chl a per cell, suggesting a greater potential to harvest light energy, however, there was no net benefit to the foraminifer growth. Overall, this study demonstrates that the impacts of OA and eutrophication are dose dependent and interactive. This research indicates an OA threshold at pH 7.6, alone or in combination with eutrophication, will lead to a decline in M. rossi calcification. The decline in foraminifera calcification associated with pollution and OA will have broad ecological implications across their ubiquitous range and suggests that without mitigation it could have serious implications for the future of coral reefs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Macrocystis pyrifera is a widely distributed, highly productive, seaweed. It is known to use bicarbonate (HCO3-) from seawater in photosynthesis and the main mechanism of utilization is attributed to the external catalyzed dehydration of HCO3- by the surface-bound enzyme carbonic anhydrase (CAext). Here, we examined other putative HCO3- uptake mechanisms in M. pyrifera under pHT 9.00 (HCO3-: CO2 = 940:1) and pHT 7.65 (HCO3-: CO2 = 51:1). Rates of photosynthesis, and internal CA (CAint) and CAext activity were measured following the application of AZ which inhibits CAext, and DIDS which inhibits a different HCO3- uptake system, via an anion exchange (AE) protein. We found that the main mechanism of HCO3- uptake by M. pyrifera is via an AE protein, regardless of the HCO3-: CO2 ratio, with CAext making little contribution. Inhibiting the AE protein led to a 55%-65% decrease in photosynthetic rates. Inhibiting both the AE protein and CAext at pHT 9.00 led to 80%-100% inhibition of photosynthesis, whereas at pHT 7.65, passive CO2 diffusion supported 33% of photosynthesis. CAint was active at pHT 7.65 and 9.00, and activity was always higher than CAext, because of its role in dehydrating HCO3- to supply CO2 to RuBisCO. Interestingly, the main mechanism of HCO3- uptake in M. pyrifera was different than that in other Laminariales studied (CAext-catalyzed reaction) and we suggest that species-specific knowledge of carbon uptake mechanisms is required in order to elucidate how seaweeds might respond to future changes in HCO3-:CO2 due to ocean acidification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In situ calcification measurements tested the hypothesis that corals from environments (Florida Bay, USA) that naturally experience large swings in pCO2 and pH will be tolerant or less sensitive to ocean acidification than species from laboratory experiments with less variable carbonate chemistry. The pCO2 in Florida Bay varies from summer to winter by several hundred ppm roughly comparable to the increase predicted by the end of the century. Rates of net photosynthesis and calcification of two stress-tolerant coral species, Siderastrea radians and Solenastrea hyades, were measured under the prevailing ambient chemical conditions and under conditions amended to simulate a pH drop of 0.1-0.2 units at bimonthly intervals over a 2-yr period. Net photosynthesis was not changed by the elevation in pCO2 and drop in pH; however, calcification declined by 52 and 50 % per unit decrease in saturation state, respectively. These results indicate that the calcification rates of S. radians and S. hyades are just as sensitive to a reduction in saturation state as coral species that have been previously studied. In other words, stress tolerance to temperature and salinity extremes as well as regular exposure to large swings in pCO2 and pH did not make them any less sensitive to ocean acidification. These two species likely survive in Florida Bay in part because they devote proportionately less energy to calcification than most other species and the average saturation state is elevated relative to that of nearby offshore water due to high rates of primary production by seagrasses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In natural environments, marine biotas are exposed to a variety of simultaneously acting abiotic factors. Among these, temperature, irradiance and CO2 availability are major factors influencing the physiological performance of marine macroalgae. To test whether elevated levels of CO2 may remediate the otherwise reduced performance of uncalcified seaweeds under the influence of other stressful abiotic factors, we performed multifactorial experiments with the red alga Chondrus crispus from Helgoland (North Sea) with two levels of CO2, temperature and irradiance: low and high pCO2 levels were tested in combination with either (1) optimal and low irradiances or (2) optimal and sub-lethal high temperatures for growth. Performance of C. crispus was evaluated as biomass increase and relative growth rates (RGR), gross photosynthesis and pigment content. Acclimations of growth and photosynthesis were measured after 4 and 8 days. Acclimation time was crucial for elucidating single or combined CO2 effects on growth and photosynthesis. Signifi- cant CO2 effects became evident only in combination with either elevated temperature or reduced irradiance. Growth and photosynthesis had divergent patterns: RGR and biomass significantly increased only under a combination of high pCO2 and elevated temperature; gross photosynthesis was significantly reduced under high pCO2 conditions at low irradiance. Pigment content varied in response to irradiance and temperature, but was independent of pCO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coral reefs are globally threatened by climate change-related ocean warming and ocean acidification (OA). To date, slow-response mechanisms such as genetic adaptation have been considered the major determinant of coral reef persistence, with little consideration of rapid-response acclimatization mechanisms. These rapid mechanisms such as parental effects that can contribute to trans-generational acclimatization (e.g. epigenetics) have, however, been identified as important contributors to offspring response in other systems. We present the first evidence of parental effects in a cross-generational exposure to temperature and OA in reef-building corals. Here, we exposed adults to high (28.9°C, 805 µatm PCO2) or ambient (26.5°C, 417 µatm PCO2) temperature and OA treatments during the larval brooding period. Exposure to high treatment negatively affected adult performance, but their larvae exhibited size differences and metabolic acclimation when subsequently re-exposed, unlike larvae from parents exposed to ambient conditions. Understanding the innate capacity corals possess to respond to current and future climatic conditions is essential to reef protection and maintenance. Our results identify that parental effects may have an important role through (1) ameliorating the effects of stress through preconditioning and adaptive plasticity, and/or (2) amplifying the negative parental response through latent effects on future life stages. Whether the consequences of parental effects and the potential for trans-generational acclimatization are beneficial or maladaptive, our work identifies a critical need to expand currently proposed climate change outcomes for corals to further assess rapid response mechanisms that include non-genetic inheritance through parental contributions and classical epigenetic mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pleistocene glaciations have been suggested as major events influencing speciation rates in vertebrates. Avian paleontological studies suggest that most extant species evolved in the Pleistocene Epoch and that species' durations decreased through the Pleistocene because of heightened speciation rates. Molecular systematic studies provide another data base for testing these predictions. In particular, rates of diversification can be determined from molecular phylogenetic trees. For example, an increasing rate of speciation (but constant extinction) requires shorter intervals between successive speciation events on a phylogenetic tree. Examination of the cumulative distribution of reconstructed speciation events in mtDNA phylogenies of 11 avian genera, however, reveals longer intervals between successive speciation events as the present time is approached, suggesting a decrease in net diversification rate through the Pleistocene Epoch. Thus, molecular systematic studies do not indicate a pulse of Pleistocene diversification in passerine birds but suggest, instead, that diversification rates were lower in the Pleistocene than for the preceding period. Documented habitat shifts likely led to the decreased rate of diversification, although from molecular evidence we cannot discern whether speciation rates decreased or extinction rates increased.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The giant panda, Ailuropoda melanoleuca is an endangered species that is protected under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and the Endangered Species Act (ESA). Numerous factors have led to a decline in giant panda populations in China including habitat loss from human activity, poaching, panda inbreeding and a low reproductive rate. This capstone analyzes the effects of CITES and ESA as policies for the protection of panda populations and their habitat. CITES and ESA provide some protection for panda populations in the United States. However, these policies do not address panda habitat protection in China.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concentration and carbon isotopic composition (d13C) of sedimentary organic carbon (C_org), N/C ratios, and terrigenous and marine d13C_org endmembers form a basis from which to address problems of Late Quaternary glacial-interglacial climatic variability in a 208.7 m hydraulic piston core (DSDP 619) from the Pigmy Basin in the northern Gulf of Mexico. While interpretations of sedimentary d13C_org time series records are often not unique, paired analyses of d13C_org and N/C are consistent with the hypothesis that the C_org in the Pigmy Basin is a climatically determined mixture of C3-photosynthetic terrigenous and marine organic matter, confirming the earlier d13C_org model of Sackett (1964). A high resolution (~1.4-2.9 Ka/sample) d13C_org record shows that sedimentary organic carbon in interglacial oxygen isotope (sub)stages 1 and 5a-b are enriched in 13C (average +/-1 sigma values are -24.2+/-1.2? and -22.9+/-0.7? relative to PDB, respectively) while glacial isotope stage values 2 are relatively depleted (-25.6+/-0.5?). Concentrations of terrigenous and marine sedimentary organic carbon are calculated for the first time using d13C_org and C_org measurements, and empirically determined terrigenous and marine d13C_org endmembers. The net accumulation rate of terrigenous organic carbon is 4.3+/-2.6 times higher in isotope stages 2-4 than in (sub)stages 1 and 5a-b, recording higher erosion rates of terrigenous organic material in glacial times. The concentration and net accumulation rates of marine and terrigenous C_org suggest that the nutrient-bearing plume of the Mississippi River may have advanced and retreated across the Pigmy Basin as sea level fell and rose in response to glacial-interglacial sea level change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes in calcification of coccolithophores may affect their photosynthetic responses to both, ultraviolet radiation (UVR, 280-400 nm) and temperature. We operated semi-continuous cultures of Emiliania huxleyi (strain CS-369) at reduced (0.1 mM, LCa) and ambient (10 mM, HCa) Ca2+ concentrations and, after 148 generations, we exposed cells to six radiation treatments (>280, >295, >305, >320, >350 and >395 nm by using Schott filters) and two temperatures (20 and 25 °C) to examine photosynthesis and calcification responses. Overall, our study demonstrated that: (1) decreased calcification resulted in a down regulation of photoprotective mechanisms (i.e., as estimated via non-photochemical quenching, NPQ), pigments contents and photosynthetic carbon fixation; (2) calcification (C) and photosynthesis (P) (as well as their ratio) have different responses related to UVR with cells grown under the high Ca2+ concentration being more resistant to UVR than those grown under the low Ca2+ level; (3) elevated temperature increased photosynthesis and calcification of E. huxleyi grown at high Ca2+concentrations whereas decreased both processes in low Ca2+ grown cells. Therefore, a decrease in calcification rates in E. huxleyi is expected to decrease photosynthesis rates, resulting in a negative feedback that further reduces calcification.