942 resultados para Neonates, EEG Analysis, Seizures, Signal Processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend in this paper some previous results concerning the differential-algebraic index of hybrid models of electrical and electronic circuits. Specifically, we present a comprehensive index characterization which holds without passivity requirements, in contrast to previous approaches, and which applies to nonlinear circuits composed of uncoupled, one-port devices. The index conditions, which are stated in terms of the forest structure of certain digraph minors, do not depend on the specific tree chosen in the formulation of the hybrid equations. Additionally, we show how to include memristors in hybrid circuit models; in this direction, we extend the index analysis to circuits including active memristors, which have been recently used in the design of nonlinear oscillators and chaotic circuits. We also discuss the extension of these results to circuits with controlled sources, making our framework of interest in the analysis of circuits with transistors, amplifiers, and other multiterminal devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel framework for the analysis and optimization of encoding latency for multiview video. Firstly, we characterize the elements that have an influence in the encoding latency performance: (i) the multiview prediction structure and (ii) the hardware encoder model. Then, we provide algorithms to find the encoding latency of any arbitrary multiview prediction structure. The proposed framework relies on the directed acyclic graph encoder latency (DAGEL) model, which provides an abstraction of the processing capacity of the encoder by considering an unbounded number of processors. Using graph theoretic algorithms, the DAGEL model allows us to compute the encoding latency of a given prediction structure, and determine the contribution of the prediction dependencies to it. As an example of DAGEL application, we propose an algorithm to reduce the encoding latency of a given multiview prediction structure up to a target value. In our approach, a minimum number of frame dependencies are pruned, until the latency target value is achieved, thus minimizing the degradation of the rate-distortion performance due to the removal of the prediction dependencies. Finally, we analyze the latency performance of the DAGEL derived prediction structures in multiview encoders with limited processing capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El dolor es un síntoma frecuente en la práctica médica. En España, un estudio realizado en el año 2000 demostró que cada médico atiende un promedio de 181 pacientes con dolor por mes, la mayoría de ellos con dolor crónico moderado1. Del 7%-8% de la población europea está afectada y hasta el 5% puede ser grave2-3, se estima, que afecta a más de dos millones de españoles4. En la consulta de Atención Primaria, los pacientes con dolor neuropático tienen tasas de depresión mucho mayores 5-6-7. El dolor neuropático8 es el dolor causado por daño o enfermedad que afecta al sistema somato-sensorial, es un problema de salud pública con un alto coste laboral, debido a que existe cierto desconocimiento de sus singularidades, tanto de su diagnóstico como de su tratamiento, que al fallar, el dolor se perpetúa y se hace más rebelde a la hora de tratarlo, en la mayoría de las ocasiones pasa a ser crónico. Los mecanismos fisiopatológicos son evolutivos, se trata de un proceso progresivo e integrado que avanza si no recibe tratamiento, ocasionando graves repercusiones en la calidad de vida de los pacientes afectados9. De acuerdo a Prusiner (premio nobel de medicina 1997), en todas las enfermedades neurodegenerativas hay algún tipo de proceso anormal de la función neuronal. Las enfermedades neurodegenerativas son la consecuencia de anormalidades en el proceso de ciertas proteínas que intervienen en el ciclo celular, por lo tanto da lugar al cúmulo de las mismas en las neuronas o en sus proximidades, disminuyendo o anulando sus funciones, como la enfermedad de Alzheimer y el mismo SXF. La proteína FMRP (Fragile Mental Retardation Protein), esencial para el desarrollo cognitivo normal, ha sido relacionada con la vía piramidal del dolor10-11-12. El Síndrome de X Frágil13-14 (SXF), se debe a la mutación del Gen (FMR-1). Como consecuencia de la mutación, el gen se inactiva y no puede realizar la función de sintetizar la proteína FMRP. Por su incidencia se le considera la primera causa de Deficiencia Mental Hereditaria sólo superada por el Síndrome de Down. La electroencefalografía (EEG) es el registro de la actividad bioeléctrica cerebral que ha traído el desarrollo diario de los estudios clínicos y experimentales para el descubrimiento, diagnóstico y tratamiento de un gran número de anormalidades neurológicas y fisiológicas del cerebro y el resto del sistema nervioso central (SNC) incluyendo el dolor. El objetivo de la presente investigación es por medio de un estudio multimodal, desarrollar nuevas formas de presentación diagnóstica mediante técnicas avanzadas de procesado de señal y de imagen, determinando así los vínculos entre las evaluaciones cognitivas y su correlación anatómica con la modulación al dolor presente en patologías relacionadas con proteína FMRP. Utilizando técnicas biomédicas (funcionalestructural) para su caracterización. Para llevar a cabo esta tarea hemos utilizado el modelo animal de ratón. Nuestros resultados en este estudio multimodal demuestran que hay alteraciones en las vías de dolor en el modelo animal FMR1-KO, en concreto en la modulación encefálica (dolor neuropático), los datos se basan en los resultados del estudio estructural (imagen histología), funcional (EEG) y en pruebas de comportamiento (Laberinto de Barnes). En la Histología se muestra una clara asimetría estructural en el modelo FMR1 KO con respecto al control WT, donde el hemisferio Izquierdo tiene mayor densidad de masa neuronal en KO hembras 56.7%-60.8%, machos 58.3%-61%, en WT hembras 62.7%-62.4%, machos 55%-56.2%, hemisferio derecho-izquierdo respectivamente, esto refleja una correlación entre hemisferios muy baja en los sujetos KO (~50%) con respecto a los control WT (~90%). Se encontró correlación significativa entre las pruebas de memoria a largo plazo con respecto a la asimetría hemisférica (r = -0.48, corregido <0,05). En el estudio de comportamiento también hay diferencias, los sujetos WT tuvieron 22% un de rendimiento en la memoria a largo plazo, mientras que en los machos hay deterioro de memoria de un 28% que se corresponden con la patología en humanos. En los resultados de EEG estudiados en el hemisferio izquierdo, en el área de la corteza insular, encuentran que la latencia de la respuesta al potencial evocado es menor (22vs32 15vs96seg), la intensidad de la señal es mayor para los sujetos experimentales FMR1 KO frente a los sujetos control, esto es muy significativo dados los resultados en la histología (140vs129 145vs142 mv). Este estudio multimodal corrobora que las manifestaciones clínicas del SXF son variables dependientes de la edad y el sexo. Hemos podido corroborar en el modelo animal que en la etapa de adulto, los varones con SXF comienzan a desarrollar problemas en el desempeño de tareas que requieren la puesta en marcha de la función ejecutiva central de la memoria de trabajo (almacenamiento temporal). En el análisis del comportamiento es difícil llegar a una conclusión objetiva, se necesitan más estudios en diferentes etapas de la vida corroborados con resultados histológicos. Los avances logrados en los últimos años en su estudio han sido muy positivos, de tal modo que se están abriendo nuevas vías de investigación en un conjunto de procesos que representan un gran desafío a problemas médicos, asistenciales, sociales y económicos a los que se enfrentan los principales países desarrollados, con un aumento masivo de las expectativas de vida y de calidad. Las herramientas utilizadas en el campo de las neurociencias nos ofrecen grandes posibilidades para el desarrollo de estrategias que permitan ser utilizadas en el área de la educación, investigación y desarrollo. La genética determina la estructura del cerebro y nuestra investigación comprueba que la ausencia de FMRP también podría estar implicada en la modulación del dolor como parte de su expresión patológica siendo el modelo animal un punto importante en la investigación científica fundamental para entender el desarrollo de anormalidades en el cerebro. ABSTRACT Pain is a common symptom in medical practice. In Spain, a study conducted in 2000 each medical professional treats an average of 181 patients with pain per month, most of them with chronic moderate pain. 7% -8% of the European population is affected and up to 5% can be serious, it is estimated to affect more than two million people in Spain. In Primary Care, patients with neuropathic pain have much higher rates of depression. Neuropathic pain is caused by damage or disease affecting the somatosensory system, is a public health problem with high labor costs, there are relatively unfamiliar with the peculiarities in diagnosis and treatment, failing that, the pain is perpetuated and becomes rebellious to treat, in most cases becomes chronic. The pathophysiological mechanisms are evolutionary, its a progressive, if untreated, causing severe impact on the quality of life of affected patients. According to Prusiner (Nobel Prize for Medicine 1997), all neurodegenerative diseases there is some abnormal process of neuronal function. Neurodegenerative diseases are the result of abnormalities in the process of certain proteins involved in the cell cycle, reducing or canceling its features such as Alzheimer's disease and FXS. FMRP (Fragile Mental Retardation Protein), is essential for normal cognitive development, and has been linked to the pyramidal tract pain. Fragile X Syndrome (FXS), is due to mutation of the gene (FMR-1). As a consequence of the mutation, the gene is inactivated and can not perform the function of FMRP synthesize. For its incidence is considered the leading cause of Mental Deficiency Hereditary second only to Down Syndrome. Electroencephalography (EEG) is the recording of bioelectrical brain activity, is a advancement of clinical and experimental studies for the detection, diagnosis and treatment of many neurological and physiological abnormalities of the brain and the central nervous system, including pain. The objective of this research is a multimodal study, is the development of new forms of presentation using advanced diagnostic techniques of signal processing and image, to determine the links between cognitive evaluations and anatomic correlation with pain modulation to this protein FMRP-related pathologies. To accomplish this task have used the mouse model. Our results in this study show alterations in multimodal pain pathways in FMR1-KO in brain modulation (neuropathic pain), the data are based on the results of the structural study (histology image), functional (EEG) testing and behavior (Barnes maze). Histology In structural asymmetry shown in FMR1 KO model versus WT control, the left hemisphere is greater density of neuronal mass (KO females 56.7% -60.8%, 58.3% -61% males, females 62.7% -62.4 WT %, males 55% -56.2%), respectively right-left hemisphere, this reflects a very low correlation between hemispheres in KO (~ 50%) subjects compared to WT (~ 90%) control. Significant correlation was found between tests of long-term memory with respect to hemispheric asymmetry (r = -0.48, corrected <0.05). In the memory test there are differences too, the WT subjects had 22% yield in long-term memory, in males there memory impairment 28% corresponding to the condition in humans. The results of EEG studied in the left hemisphere, in insular cortex area, we found that the latency of the response evoked potential is lower (22vs32 15vs96seg), the signal strength is higher for the experimental subjects versus FMR1 KO control subjects, this is very significant given the results on histology (140vs129 145vs142 mv). This multimodal study confirms that the clinical manifestations of FXS are dependent variables of age and sex. We have been able to corroborate in the animal model in the adult stage, males with FXS begin developing problems in the performance of tasks that require the implementation of the central executive function of working memory (temporary storage). In behavior analysis is difficult to reach an objective conclusion, more studies are needed in different life stages corroborated with histologic findings. Advances in recent years were very positive, being opened new lines of research that represent a great challenge to physicians, health care, social and economic problems facing the major developed countries, with a massive increase in life expectancy and quality. The tools used in the field of neuroscience offer us great opportunities for the development of strategies to be used in the area of education, research and development. Genetics determines the structure of the brain and our research found that the absence of FMRP might also be involved in the modulation of pain as part of their pathological expression being an important animal model in basic scientific research to understand the development of abnormalities in brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical study of cepstral peak prominence (CPP) is presented, intended to provide an insight into its meaning and relation with voice perturbation parameters. To carry out this analysis, a parametric approach is adopted in which voice production is modelled using the traditional source-filter model and the first cepstral peak is assumed to have Gaussian shape. It is concluded that the meaning of CPP is very similar to that of the first rahmonic and some insights are provided on its dependence with fundamental frequency and vocal tract resonances. It is further shown that CPP integrates measures of voice waveform and periodicity perturbations, be them either amplitude, frequency or noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear analysis tools for studying and characterizing the dynamics of physiological signals have gained popularity, mainly because tracking sudden alterations of the inherent complexity of biological processes might be an indicator of altered physiological states. Typically, in order to perform an analysis with such tools, the physiological variables that describe the biological process under study are used to reconstruct the underlying dynamics of the biological processes. For that goal, a procedure called time-delay or uniform embedding is usually employed. Nonetheless, there is evidence of its inability for dealing with non-stationary signals, as those recorded from many physiological processes. To handle with such a drawback, this paper evaluates the utility of non-conventional time series reconstruction procedures based on non uniform embedding, applying them to automatic pattern recognition tasks. The paper compares a state of the art non uniform approach with a novel scheme which fuses embedding and feature selection at once, searching for better reconstructions of the dynamics of the system. Moreover, results are also compared with two classic uniform embedding techniques. Thus, the goal is comparing uniform and non uniform reconstruction techniques, including the one proposed in this work, for pattern recognition in biomedical signal processing tasks. Once the state space is reconstructed, the scheme followed characterizes with three classic nonlinear dynamic features (Largest Lyapunov Exponent, Correlation Dimension and Recurrence Period Density Entropy), while classification is carried out by means of a simple k-nn classifier. In order to test its generalization capabilities, the approach was tested with three different physiological databases (Speech Pathologies, Epilepsy and Heart Murmurs). In terms of the accuracy obtained to automatically detect the presence of pathologies, and for the three types of biosignals analyzed, the non uniform techniques used in this work lightly outperformed the results obtained using the uniform methods, suggesting their usefulness to characterize non-stationary biomedical signals in pattern recognition applications. On the other hand, in view of the results obtained and its low computational load, the proposed technique suggests its applicability for the applications under study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, Independent Components Analysis (ICA) has proven itself to be a powerful signal-processing technique for solving the Blind-Source Separation (BSS) problems in different scientific domains. In the present work, an application of ICA for processing NIR hyperspectral images to detect traces of peanut in wheat flour is presented. Processing was performed without a priori knowledge of the chemical composition of the two food materials. The aim was to extract the source signals of the different chemical components from the initial data set and to use them in order to determine the distribution of peanut traces in the hyperspectral images. To determine the optimal number of independent component to be extracted, the Random ICA by blocks method was used. This method is based on the repeated calculation of several models using an increasing number of independent components after randomly segmenting the matrix data into two blocks and then calculating the correlations between the signals extracted from the two blocks. The extracted ICA signals were interpreted and their ability to classify peanut and wheat flour was studied. Finally, all the extracted ICs were used to construct a single synthetic signal that could be used directly with the hyperspectral images to enhance the contrast between the peanut and the wheat flours in a real multi-use industrial environment. Furthermore, feature extraction methods (connected components labelling algorithm followed by flood fill method to extract object contours) were applied in order to target the spatial location of the presence of peanut traces. A good visualization of the distributions of peanut traces was thus obtained

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotactic signaling in Escherichia coli involves transmission of both negative and positive signals. In order to examine mechanisms of signal processing, behavioral responses to dual inputs have been measured by using photoactivable "caged" compounds, computer video analysis, and chemoreceptor deletion mutants. Signaling from Tar and Tsr, two receptors that sense amino acids and pH, was studied. In a Tar deletion mutant the photoactivated release of protons, a Tsr repellent, and of serine, a Tsr attractant, in separate experiments at pH 7.0 resulted in tumbling (negative) or smooth-swimming (positive) responses in ca. 50 and 140 ms, respectively. Simultaneous photorelease of protons and serine resulted in a single tumbling or smooth-swimming response, depending on the relative amounts of the two effectors. In contrast, in wild-type E. coli, proton release at pH 7.0 resulted in a biphasic response that was attributed to Tsr-mediated tumbling followed by Tar-mediated smooth-swimming. In wild-type E. coli at more alkaline pH values the Tar-mediated signal was stronger than the Tsr signal, resulting in a strong smooth-swimming response preceded by a diminished tumbling response. These observations imply that (i) a single receptor time-averages the binding of different chemotactic ligands generating a single response; (ii) ligand binding to different receptors can result in a nonintegrated response with the tumbling response preceding the smooth-swimming response; (iii) however, chemotactic signals of different intensities derived from different receptors can also result in an apparently integrated response; and (iv) the different chemotactic responses to protons at neutral and alkaline pH may contribute to E. coli migration toward neutrality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obstructive sleep apnea (OSA) is a highly prevalent disease in which upper airways are collapsed during sleep, leading to serious consequences. The gold standard of diagnosis, called polysomnography (PSG), requires a full-night hospital stay connected to over ten channels of measurements requiring physical contact with sensors. PSG is inconvenient, expensive and unsuited for community screening. Snoring is the earliest symptom of OSA, but its potential in clinical diagnosis is not fully recognized yet. Diagnostic systems intent on using snore-related sounds (SRS) face the tough problem of how to define a snore. In this paper, we present a working definition of a snore, and propose algorithms to segment SRS into classes of pure breathing, silence and voiced/unvoiced snores. We propose a novel feature termed the 'intra-snore-pitch-jump' (ISPJ) to diagnose OSA. Working on clinical data, we show that ISPJ delivers OSA detection sensitivities of 86-100% while holding specificity at 50-80%. These numbers indicate that snore sounds and the ISPJ have the potential to be good candidates for a take-home device for OSA screening. Snore sounds have the significant advantage in that they can be conveniently acquired with low-cost non-contact equipment. The segmentation results presented in this paper have been derived using data from eight patients as the training set and another eight patients as the testing set. ISPJ-based OSA detection results have been derived using training data from 16 subjects and testing data from 29 subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All signals that appear to be periodic have some sort of variability from period to period regardless of how stable they appear to be in a data plot. A true sinusoidal time series is a deterministic function of time that never changes and thus has zero bandwidth around the sinusoid's frequency. A zero bandwidth is impossible in nature since all signals have some intrinsic variability over time. Deterministic sinusoids are used to model cycles as a mathematical convenience. Hinich [IEEE J. Oceanic Eng. 25 (2) (2000) 256-261] introduced a parametric statistical model, called the randomly modulated periodicity (RMP) that allows one to capture the intrinsic variability of a cycle. As with a deterministic periodic signal the RMP can have a number of harmonics. The likelihood ratio test for this model when the amplitudes and phases are known is given in [M.J. Hinich, Signal Processing 83 (2003) 1349-13521. A method for detecting a RMP whose amplitudes and phases are unknown random process plus a stationary noise process is addressed in this paper. The only assumption on the additive noise is that it has finite dependence and finite moments. Using simulations based on a simple RMP model we show a case where the new method can detect the signal when the signal is not detectable in a standard waterfall spectrograrn display. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the performance analysis of separation of mutually independent sources in nonlinear models. The nonlinear mapping constituted by an unsupervised linear mixture is followed by an unknown and invertible nonlinear distortion, are found in many signal processing cases. Generally, blind separation of sources from their nonlinear mixtures is rather difficult. We propose using a kernel density estimator incorporated with equivariant gradient analysis to separate the sources with nonlinear distortion. The kernel density estimator parameters of which are iteratively updated to minimize the output independence expressed as a mutual information criterion. The equivariant gradient algorithm has the form of nonlinear decorrelation to perform the convergence analysis. Experiments are proposed to illustrate these results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the performance of EASI algorithm and the proposed EKENS algorithm for linear and nonlinear mixtures. The proposed EKENS algorithm is based on the modified equivariant algorithm and kernel density estimation. Theory and characteristic of both the algorithms are discussed for blind source separation model. The separation structure of nonlinear mixtures is based on a nonlinear stage followed by a linear stage. Simulations with artificial and natural data demonstrate the feasibility and good performance of the proposed EKENS algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents an investigation, of synchronisation and causality, motivated by problems in computational neuroscience. The thesis addresses both theoretical and practical signal processing issues regarding the estimation of interdependence from a set of multivariate data generated by a complex underlying dynamical system. This topic is driven by a series of problems in neuroscience, which represents the principal background motive behind the material in this work. The underlying system is the human brain and the generative process of the data is based on modern electromagnetic neuroimaging methods . In this thesis, the underlying functional of the brain mechanisms are derived from the recent mathematical formalism of dynamical systems in complex networks. This is justified principally on the grounds of the complex hierarchical and multiscale nature of the brain and it offers new methods of analysis to model its emergent phenomena. A fundamental approach to study the neural activity is to investigate the connectivity pattern developed by the brain’s complex network. Three types of connectivity are important to study: 1) anatomical connectivity refering to the physical links forming the topology of the brain network; 2) effective connectivity concerning with the way the neural elements communicate with each other using the brain’s anatomical structure, through phenomena of synchronisation and information transfer; 3) functional connectivity, presenting an epistemic concept which alludes to the interdependence between data measured from the brain network. The main contribution of this thesis is to present, apply and discuss novel algorithms of functional connectivities, which are designed to extract different specific aspects of interaction between the underlying generators of the data. Firstly, a univariate statistic is developed to allow for indirect assessment of synchronisation in the local network from a single time series. This approach is useful in inferring the coupling as in a local cortical area as observed by a single measurement electrode. Secondly, different existing methods of phase synchronisation are considered from the perspective of experimental data analysis and inference of coupling from observed data. These methods are designed to address the estimation of medium to long range connectivity and their differences are particularly relevant in the context of volume conduction, that is known to produce spurious detections of connectivity. Finally, an asymmetric temporal metric is introduced in order to detect the direction of the coupling between different regions of the brain. The method developed in this thesis is based on a machine learning extensions of the well known concept of Granger causality. The thesis discussion is developed alongside examples of synthetic and experimental real data. The synthetic data are simulations of complex dynamical systems with the intention to mimic the behaviour of simple cortical neural assemblies. They are helpful to test the techniques developed in this thesis. The real datasets are provided to illustrate the problem of brain connectivity in the case of important neurological disorders such as Epilepsy and Parkinson’s disease. The methods of functional connectivity in this thesis are applied to intracranial EEG recordings in order to extract features, which characterize underlying spatiotemporal dynamics before during and after an epileptic seizure and predict seizure location and onset prior to conventional electrographic signs. The methodology is also applied to a MEG dataset containing healthy, Parkinson’s and dementia subjects with the scope of distinguishing patterns of pathological from physiological connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents the results from an investigation into the merits of analysing Magnetoencephalographic (MEG) data in the context of dynamical systems theory. MEG is the study of both the methods for the measurement of minute magnetic flux variations at the scalp, resulting from neuro-electric activity in the neocortex, as well as the techniques required to process and extract useful information from these measurements. As a result of its unique mode of action - by directly measuring neuronal activity via the resulting magnetic field fluctuations - MEG possesses a number of useful qualities which could potentially make it a powerful addition to any brain researcher's arsenal. Unfortunately, MEG research has so far failed to fulfil its early promise, being hindered in its progress by a variety of factors. Conventionally, the analysis of MEG has been dominated by the search for activity in certain spectral bands - the so-called alpha, delta, beta, etc that are commonly referred to in both academic and lay publications. Other efforts have centred upon generating optimal fits of "equivalent current dipoles" that best explain the observed field distribution. Many of these approaches carry the implicit assumption that the dynamics which result in the observed time series are linear. This is despite a variety of reasons which suggest that nonlinearity might be present in MEG recordings. By using methods that allow for nonlinear dynamics, the research described in this thesis avoids these restrictive linearity assumptions. A crucial concept underpinning this project is the belief that MEG recordings are mere observations of the evolution of the true underlying state, which is unobservable and is assumed to reflect some abstract brain cognitive state. Further, we maintain that it is unreasonable to expect these processes to be adequately described in the traditional way: as a linear sum of a large number of frequency generators. One of the main objectives of this thesis will be to prove that much more effective and powerful analysis of MEG can be achieved if one were to assume the presence of both linear and nonlinear characteristics from the outset. Our position is that the combined action of a relatively small number of these generators, coupled with external and dynamic noise sources, is more than sufficient to account for the complexity observed in the MEG recordings. Another problem that has plagued MEG researchers is the extremely low signal to noise ratios that are obtained. As the magnetic flux variations resulting from actual cortical processes can be extremely minute, the measuring devices used in MEG are, necessarily, extremely sensitive. The unfortunate side-effect of this is that even commonplace phenomena such as the earth's geomagnetic field can easily swamp signals of interest. This problem is commonly addressed by averaging over a large number of recordings. However, this has a number of notable drawbacks. In particular, it is difficult to synchronise high frequency activity which might be of interest, and often these signals will be cancelled out by the averaging process. Other problems that have been encountered are high costs and low portability of state-of-the- art multichannel machines. The result of this is that the use of MEG has, hitherto, been restricted to large institutions which are able to afford the high costs associated with the procurement and maintenance of these machines. In this project, we seek to address these issues by working almost exclusively with single channel, unaveraged MEG data. We demonstrate the applicability of a variety of methods originating from the fields of signal processing, dynamical systems, information theory and neural networks, to the analysis of MEG data. It is noteworthy that while modern signal processing tools such as independent component analysis, topographic maps and latent variable modelling have enjoyed extensive success in a variety of research areas from financial time series modelling to the analysis of sun spot activity, their use in MEG analysis has thus far been extremely limited. It is hoped that this work will help to remedy this oversight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard reference clinical score quantifying average Parkinson's disease (PD) symptom severity is the Unified Parkinson's Disease Rating Scale (UPDRS). At present, UPDRS is determined by the subjective clinical evaluation of the patient's ability to adequately cope with a range of tasks. In this study, we extend recent findings that UPDRS can be objectively assessed to clinically useful accuracy using simple, self-administered speech tests, without requiring the patient's physical presence in the clinic. We apply a wide range of known speech signal processing algorithms to a large database (approx. 6000 recordings from 42 PD patients, recruited to a six-month, multi-centre trial) and propose a number of novel, nonlinear signal processing algorithms which reveal pathological characteristics in PD more accurately than existing approaches. Robust feature selection algorithms select the optimal subset of these algorithms, which is fed into non-parametric regression and classification algorithms, mapping the signal processing algorithm outputs to UPDRS. We demonstrate rapid, accurate replication of the UPDRS assessment with clinically useful accuracy (about 2 UPDRS points difference from the clinicians' estimates, p < 0.001). This study supports the viability of frequent, remote, cost-effective, objective, accurate UPDRS telemonitoring based on self-administered speech tests. This technology could facilitate large-scale clinical trials into novel PD treatments.