966 resultados para Natural light
Resumo:
Genetic diversity of baltic F. vesiculosus is low compared to other populations which might jeopardize their potential for adaptation to climate change. Especially the early life-stage F. vesiculosus may be threaten by ocean warming and acidification. To test this, we exposed F. vesiculosus germlings to warming and acidification in the near-natural scenario in the "Kiel Outdoor Benthocosms" maintaining the natural variation of the Kiel Fjord, Germany (54°27 'N, 10°11 'W) in all seasons (spring 2013 - 2014). Warming was simulated by using a delta treatment adding 5 °C and by increasing pCO2 at 1000 µatm. Warming positively affected germlings' growth in spring and in summer but decreased non-photochemical quenching in spring and survival in summer. Acidified conditions showed much weaker effects than warming. The high genotypic variation in stress sensitivity as well as the enhanced survival at high diversity levels indicate higher potential for adaptation for genetically diverse populations. We conclude that the combination of stressors and season determines the sensitivity to environmental stress and that genetic variation is crucial for the adaptation to climate change stress.
Resumo:
Accumulation rate of dissolved organic matter (DOM) by natural populations varies over a wide range. In the surface layer of the Black Sea accumulation rate of glucose is 0.6-4.82 mg C/m**3 per day, and in the Atlantic Ocean 1.15-12.38 mg C/m**3 per day. This rate is 2-17 times higher when hydrolysate is added to the medium. Accumulation rate of glucose and hydrolysate in the aphotic layer of the Black Sea and the Atlantic Ocean is 1.5-6 times lower than at the surface. The organotrophic coefficient also varied within wide range. Relative amount of DOM used by microorganisms for growth in total production is much less (0.6-39.9%) in areas of intensive photosynthesis than in waters poor in DOM (83.7-99.2%).
Resumo:
Bacterial biofilms provide cues for the settlement of marine invertebrates such as coral larvae, and are therefore important for the resilience and recovery of coral reefs. This study aimed to better understand how ocean acidification may affect the community composition and diversity of bacterial biofilms on surfaces under naturally reduced pH conditions. Settlement tiles were deployed at coral reefs in Papua New Guinea along pH gradients created by two CO2 seeps, and upper and lower tiles surfaces were sampled 5 and 13 months after deployment. Automated Ribosomal Intergenic Spacer Analysis were used to characterize more than 200 separate bacterial communities, complemented by amplicon sequencing of the bacterial 16S rRNA gene of 16 samples. The bacterial biofilm consisted predominantly of Alpha-, Gamma- and Deltaproteobacteria, as well as Cyanobacteria, Flavobacteriia and Cytophaga, whereas putative settlement-inducing taxa only accounted for a small fraction of the community. Bacterial biofilm composition was heterogeneous with approximately 25% shared operational taxonomic units between samples. Among the observed environmental parameters, pH only had a weak effect on community composition (R² ~ 1%) and did not affect community richness and evenness. In contrast, there were strong differences between upper and lower surfaces (contrasting in light exposure and grazing intensity). There also appeared to be a strong interaction between bacterial biofilm composition and the macroscopic components of the tile community. Our results suggest that on mature settlement surfaces in situ, pH does not have a strong impact on the composition of bacterial biofilms. Other abiotic and biotic factors such as light exposure and interactions with other organisms may be more important in shaping bacterial biofilms than changes in seawater pH.
Resumo:
These data form the basis of an analysis of a prevalent research bias in the field of ocean acidification, notably the ignoring of natural fluctuations and gradients in the experimental design. The data are extracted from published work and own experiments.
Resumo:
Low seawater pH can be harmful to many calcifying marine organisms, but the calcifying macroalgae Padina spp. flourish at natural submarine carbon dioxide seeps where seawater pH is low. We show that the microenvironment created by the rolled thallus margin of Padina australis facilitates supersaturation of CaCO3 and calcifi-cation via photosynthesis-induced elevated pH. Using microsensors to investigate oxygen and pH dynamics in the microenvironment of P. australis at a shallow CO2 seep, we found that, under saturating light, the pH inside the microenvironment (pHME) was higher than the external seawater (pHSW) at all pHSW levels investigated, and the difference (i.e., pHME-pHSW) increased with decreasing pHSW (0.9 units at pHSW 7.0). Gross photosynthesis (Pg) inside the microenvironment increased with decreasing pHSW, but algae from the control site reached a threshold at pH 6.5. Seep algae showed no pH threshold with respect to Pg within the pHSW range investigated. The external carbonic anhydrase (CA) inhibitor, acetazolamide, strongly inhibited Pg of P. australis at pHSW 8.2, but the effect was diminished under low pHSW (6.4-7.5), suggesting a greater dependence on membrane-bound CA for the dehydration of HCO3- ions during dissolved inorganic carbon uptake at the higher pHSW. In comparison, a calcifying green alga, Halimeda cuneata f. digitata, was not inhibited by AZ, suggesting efficient bicarbonate transport. The ability of P. australis to elevate pHME at the site of calcification and its strong dependence on CA may explain why it can thrive at low pHSW.
Resumo:
Pesticide applications are still one of the most common control methods against the main olive grove pests and diseases: the olive fruit fly, Bactrocera oleae (Rossi), the olive moth, Prays oleae (Bernard), the black scale, Saissetia oleae (Olivier), and the olive leaf spot, caused by the fungus Spilocaea oleagina Fries. However, and because the new pesticide legislation is aimed at an integrated pest and disease management, it is still important to evaluate and to know the ecotoxicology of pesticides on the natural enemies of the different agrosystems. A part of this work has been focusses on evaluating the direct and indirect effects of kaolin particle films and two copper-based products (Bordeaux mixture and copper oxychloride) through different laboratory, extended laboratory and semi-field experiments. Two natural enemies have been chosen: Psyttalia concolor (Szèpligeti), a parasitoid of the olive fruit fly, and Chilocorus nigritus (F.), predator of Diaspididae. This predator has been used instead of C. bipustulatus (L.), which is the species found in olive orchards. Kaolin mainly acts as a repellent of insects and/or as an oviposition deterrent. It is used in olive groves to control the olive fruit fly and the olive moth. Copper is applied against fungal and bacterial diseases. In olive groves it is used against the olive leaf spot and other diseases. No statistical differences were found in any of the experiments performed, compared to the controls, except when the oral toxicity of the products was evaluated on P. concolor females. In this case, kaolin and copper oxychloride caused a higher mortality 72 hours after the treatments, and both kaolin and the two copper formulations decreased females’ life span. Reproductive parameters were only negatively affected when kaolin was ingested. Apart from these experiments, due to the uncommon mode of action of kaolin, two extra experiments were carried out: a dual choice and a no-choice experiment. In this case, both P. concolor females and C. nigritus adults showed a clear preference for the untreated surfaces when they had the possibility of choosing between a treated surface and an untreated one. When there was no choice, no statistical differences were found between the treatments and the controls. Furthermore, the efficacy and the selectivity of three insect growth regulators (methoxyfenozide, tebufenozide and RH-5849) on B. oleae and P. concolor, respectively, have also been evaluated. In addition to laboratory experiments to evaluate the toxicity of the insecticides, also molecular approaches were used. RNA of both insects was isolated. cDNA was subsequently synthesized and the complete sequences of the ligand biding domain (LBD) of the ecdysone receptor of each insect were then determined. Afterwards the three dimensional structures of both LBDs were constructed. Finally, the docking of the insecticide molecules in the cavity delineated by the 12 α-helix that composed the LBD was performed. Both toxicity assays and molecular docking approaches showed that either methoxyfenozide or tebufenozide had no negative effects nor on B. oleae nor on P. concolor. In contrast, RH-5849 had no deleterious effect to the parasitoid but decreased olive fruit fly adults’ life span, especially when they were in contact with the fresh residue of the insecticide applied on a glass surface. The docking study of RH-5849 molecule has shown a very light hindrance with the wall of the LBD pocket. This means that this molecule could more or less adjust in the cavity. Thus, searching of new insecticides for controlling the olive fruit fly could be based on the basic lead structure of RH-5849 molecule.
Resumo:
Heart valve prostheses are used to replace native heart valves which that are damaged because of congenital diseases or due to ageing. Biological prostheses made of bovine pericardium are similar to native valves and do not require any anticoagulation treatment, but are less durable than mechanical prostheses and usually fail by tearing. Researches are oriented in improving the resistance and durability of biological heart valve prostheses in order to increase their life expectancy. To understand the mechanical behaviour of bovine pericardium and relate it to its microstructure (mainly collagen fibres concentration and orientation) uniaxial tensile tests have been performed on a model material made of collagen fibres. Small Angle Light Scattering (SALS) has been also used to characterize the microstructure without damaging the material. Results with the model material allowed us to obtain the orientation of the fibres, relating the microstructure to mechanical performance
Resumo:
La historia de la construcción de las catedrales góticas es la historia de la búsqueda de la luz. Esta afirmación casi metafísica, recoge una realidad asumida por todos los historiadores tanto de la arquitectura antigua como del resto de las artes. La luz en el gótico ha sido descrita bajo múltiples matices como son su carácter simbólico, cromático e incluso místico, sin embargo no existe, en el estudio del conocimiento de la luz gótica, ninguna referencia a la misma como realidad física cuantificable, cualificable y por tanto, clasificable. La presente tesis doctoral aborda el concepto de la iluminación gótica desde una perspectiva nueva. Demuestra, con un método analítico inédito, que la iluminación gótica es cuantificable y cualificable. Para ello analiza en profundidad la iluminación de una selección de 6 edificios muestra, las catedrales de Gerona, Toledo, Sevilla y León, la basílica de Santa María del Mar y la capilla de la Sainte Chapelle de París, mediante una toma de datos “in situ” de iluminación y su comparación con los datos lumínicos obtenidos por un programa de soleamiento de la simulación en tres dimensiones de los distintos proyectos originales góticos. El análisis exhaustivo de las muestras y su introducción en el método analítico descrito, permite determinar, en primer lugar, unas cualidades inéditas que identifican la luz de los espacios góticos según unos parámetros nuevos como son la intensidad, expresividad, recorrido, distorsión y color. También describe cuales son los factores determinantes, de nuevo inéditos, que modulan cada una de las cualidades y en que proporción lo hacen cada uno de ellos. Una vez establecidas las cualidades y los factores que las definen, la tesis doctoral establece los rangos en los que se mueven las distintas cualidades y que conformarán la definitiva clasificación según “tipos de cualidad lumínica”. Adicionalmente, la tesis propone un procedimiento abreviado de acercamiento a la realidad de la iluminación gótica a través de unas fórmulas matemáticas que relacionan los factores geométricos detectados y descritos en la tesis con el resultado luminoso del espacio en lo que concierne a las dos cualidades más importantes de las reflejadas, la intensidad y la expresividad. Gracias a este método y su procedimiento abreviado, la clasificación se hace extensible al resto de catedrales góticas del panorama español y europeo y abre el camino a nuevas clasificaciones de edificios históricos de distintas épocas, iniciando un apasionante camino por recorrer en la recuperación de “la luz original”. Esta clasificación y sus cualidades podrán a su vez, ser utilizadas como herramientas de conocimiento de un factor determinante a la hora de describir cualquier espacio gótico y su aportación pretende ser un nuevo condicionante a tener en cuenta en el futuro, ayudando a entender y respetar, en las posibles intervenciones a realizar sobre el patrimonio arquitectónico, aquello que fue en su inicio motor principal del proyecto arquitectónico y que hoy día no se valora suficientemente tan solo por falta de conocimiento: su luz. The history of the construction of the Gothic cathedrals is the history of the search for light. This almost etaphysical statement reflects a reality accepted by all historians both of ancient architecture and other arts. Light in the Gothic period has been described under multiple approaches such as its symbolic, chromatic and even mystical character. However, in the study of the Gothic light, no references exist to it as a physical quantifiable and qualifiable reality and therefore, classifiable. This dissertation deals with the concept of Gothic light from a new perspective. With a new analytical method, it shows that Gothic lighting is quantifiable and can be classified regarding quality. To this end, a selection of 6 buildings light samples are analyzed; the cathedrals of Gerona, Toledo, Seville and León, the basilica of Santa María of the Sea and the Sainte Chapelle in Paris. "In situ" lighting data is collected and it is compared with lighting data obtained by a program of sunlight of the 3D simulation of various Gothic original projects. The comprehensive analysis of the samples and the data introduced in the analytical method described, allows determining, first, important qualities that identify the light of Gothic spaces according to new parameters such as intensity, expressiveness, trajectory, distortion and color. It also describes the determinant factors, which modulate each of the qualities and in what proportion they do it. Once the qualities and factors that define them have been established, in this doctoral dissertation the ranges regarding different qualities are set, which will make up the final classification according to "types of light quality". In addition, this work proposes an abbreviated procedure approach to the reality of the Gothic lighting through some mathematical formulae, relating the geometric factors identified and described in the study with the bright result of space regarding the two most important qualities of the light,intensity and expressiveness. Thanks to this method and to the abbreviated procedure, the classification can be applied to other Spanish and European Gothic cathedrals and opens up the way to new classifications of historic buildings from different eras, starting an exciting road ahead in the recovery of the "original light". This classification and its qualities may in turn be used as tools to know a determinant factor when describing any Gothic space. Its contribution is intended to be a new conditioning factor to keep in mind in the future, helping to understand and respect, in possible interventions on the architectural heritage, what was the main engine to start the architectural project and which today is not valued enough due to the lack knowledge: the light.
Resumo:
We proposed in our previous work V-substituted In2S3 as an intermediate band (IB) material able to enhance the efficiency of photovoltaic cells by combining two photons to achieve a higher energy electron excitation, much like natural photosynthesis. Here this hyper-doped material is tested in a photocatalytic reaction using wavelength-controlled light. The results evidence its ability to use photons with wavelengths of up to 750 nm, i.e. with energy significantly lower than the bandgap (=2.0 eV) of non-substituted In2S3, driving with them the photocatalytic reaction at rates comparable to those of non-substituted In2S3 in its photoactivity range (λ ≤ 650 nm). Photoluminescence spectra evidence that the same bandgap excitation as in V-free In2S3 occurs in V-substituted In2S3 upon illumination with photons in the same sub-bandgap energy range which is effective in photocatalysis, and its linear dependence on light intensity proves that this is not due to a nonlinear optical property. This evidences for the first time that a two-photon process can be active in photocatalysis in a single-phase material. Quantum calculations using GW-type many-body perturbation theory suggest that the new band introduced in the In2S3 gap by V insertion is located closer to the conduction band than to the valence band, so that hot carriers produced by the two-photon process would be of electron type; they also show that the absorption coefficients of both transitions involving the IB are of significant and similar magnitude. The results imply that V-substituted In2S3, besides being photocatalytically active in the whole visible light range (a property which could be used for the production of solar fuels), could make possible photovoltaic cells of improved efficiency.
Resumo:
Article New Forests November 2015, Volume 46, Issue 5, pp 869-883 First online: 17 June 2015 Establishing Quercus ilex under Mediterranean dry conditions: sowing recalcitrant acorns versus planting seedlings at different depths and tube shelter light transmissionsJuan A. OlietAffiliated withDepartamento de Sistemas y Recursos Naturales, E.T.S. Ingenieros de Montes, Universidad Politécnica de Madrid Email author View author's OrcID profile , Alberto Vázquez de CastroAffiliated withDepartamento de Sistemas y Recursos Naturales, E.T.S. Ingenieros de Montes, Universidad Politécnica de Madrid, Jaime PuértolasAffiliated withLancaster Environment Centre, Lancaster University $39.95 / €34.95 / £29.95 * Rent the article at a discount Rent now * Final gross prices may vary according to local VAT. Get Access AbstractSuccess of Mediterranean dry areas restoration with oaks is a challenging goal. Testing eco-techniques that mimic beneficial effects of natural structures and ameliorate stress contributes to positive solutions to overcoming establishment barriers. We ran a factorial experiment in a dry area, testing two levels of solid wall transmission of tube shelters (60 and 80 %) plus a control mesh, and two depths (shallow and 15 cm depth) of placing either planted seedlings or acorns of Quercus ilex. Microclimate of the planting or sowing spots was characterized by measuring photosynthetically active radiation, temperature and relative humidity. Plant response was evaluated in terms of survival, phenology, acorn emergence and photochemical efficiency (measured through chlorophyll fluorescence). We hypothesize that tube shelters and deep planting improve Q. ilex post-planting and sowing performance because of the combined effects of reducing excessive radiation and improving access to moist soil horizons. Results show that temperature and PAR was reduced, and relative humidity increased, in deep spots. Midsummer photochemical efficiency indicates highest level of stress for oaks in 80 % light transmission shelter. Optimum acorn emergence in spring was registered within solid wall tree shelters, and maximum summer survival of germinants and of planted seedlings occurred when acorns or seedlings were placed at 15 cm depth irrespectively of light transmission of shelter. Survival of germinants was similar to that of planted seedlings. The importance of techniques to keep high levels of viability after sowing recalcitrant seeds in the field is emphasized in the study