866 resultados para Native Ecosystems
Resumo:
The liming effects on the growth of fifteen woody species of Brazil were evaluated under glasshouse conditions. The species used belong to different ecologic groups, namely: pioneer, secondary and climax trees. The soil treatments consisted in the absence of liming (-LIM) and liming sufficient to reach soil pH 6.0 (+LIM). In general, the pioneer and secondary species presented higher responses in total dry matter production (TDM) to soil liming, whereas the TDM of the climax species were not affected by the soil treatments. Thus, the ranking of species in relation to soil acidity tolerance ranged from highly sensitive to highly tolerant. The pioneer and secondary species growing in limed soil (+LIM) showed higher calcium (Ca), magnesium (Mg) and phosphorus (P) contents, and, at the same time lower Ca, Mg utilization efficiency (CaUE and MgUE respectively), whereas the P utilization (PUE) was higher. In contrast, the Ca, Mg and P content in the climax species were only slightly affected by the soil liming. In general the climax species were less efficient in the CaUE and MgUE than the pioneer and secondary species.
Resumo:
BACKGROUND: Although methicillin-susceptible Staphylococcus aureus (MSSA) native bone and joint infection (BJI) constitutes the more frequent clinical entity of BJI, prognostic studies mostly focused on methicillin-resistant S. aureus prosthetic joint infection. We aimed to assess the determinants of native MSSA BJI outcomes. METHODS: Retrospective cohort study (2001-2011) of patients admitted in a reference hospital centre for native MSSA BJI. Treatment failure determinants were assessed using Kaplan-Meier curves and binary logistic regression. RESULTS: Sixty-six patients (42 males [63.6%]; median age 61.2 years; interquartile range [IQR] 45.9-71.9) presented an acute (n = 38; 57.6%) or chronic (n = 28; 42.4%) native MSSA arthritis (n = 15; 22.7%), osteomyelitis (n = 19; 28.8%) or spondylodiscitis (n = 32; 48.5%), considered as "difficult-to-treat" in 61 cases (92.4%). All received a prolonged (27.1 weeks; IQR, 16.9-36.1) combined antimicrobial therapy, after surgical management in 37 cases (56.1%). Sixteen treatment failures (24.2%) were observed during a median follow-up period of 63.3 weeks (IQR, 44.7-103.1), including 13 persisting infections, 1 relapse after treatment disruption, and 2 super-infections. Independent determinants of treatment failure were the existence of a sinus tract (odds ratio [OR], 5.300; 95% confidence interval [CI], 1.166-24.103) and a prolonged delay to infectious disease specialist referral (OR, 1.134; 95% CI 1.013-1.271). CONCLUSIONS: The important treatment failure rate pinpointed the difficulty of cure encountered in complicated native MSSA BJI. An early infectious disease specialist referral is essential, especially in debilitated patients or in presence of sinus tract.
Resumo:
This document lists all trees and shrubs that are native to Iowa is their common name and scientific name. Along with height of maturity, growth rate uses and limitations.
Resumo:
If you have ever flown in an airplane over Iowa, you would see that our woodlands are scattered along the rivers and streams and areas too steep to farm. You would also see a green carpet of trees within out cities and towns. Did you know the 90% of the over 2.7 million acres of forest in Iowa is owned by over 138,000 different private owners? Or that 30% of the land cover in a typical Iowa community if covered by trees? Trees are vital for the protection of our drinking water supply, critical for wildlife habitat, and help sustain employment of over 7,000 Iowans in the wood products industry. This booklet "20 Native trees to Plant" will help you gain a greater knowledge about Iowa's trees and forests. Learn about and enjoy Iowa's trees. Consider ways that you can improve our environment by planting and caring for Iowa's trees and forests.
Resumo:
Selostus: Viljellyn pensasmustikan ja luonnonvaraisten mustikan ja juolukan sienijuuret
Resumo:
Introduction Societies of ants, bees, wasps and termites dominate many terrestrial ecosystems (Wilson 1971). Their evolutionary and ecological success is based upon the regulation of internal conflicts (e.g. Ratnieks et al. 2006), control of diseases (e.g. Schmid-Hempel 1998) and individual skills and collective intelligence in resource acquisition, nest building and defence (e.g. Camazine 2001). Individuals in social species can pass on their genes not only directly trough their own offspring, but also indirectly by favouring the reproduction of relatives. The inclusive fitness theory of Hamilton (1963; 1964) provides a powerful explanation for the evolution of reproductive altruism and cooperation in groups with related individuals. The same theory also led to the realization that insect societies are subject to internal conflicts over reproduction. Relatedness of less-than-one is not sufficient to eliminate all incentive for individual selfishness. This would indeed require a relatedness of one, as found among cells of an organism (Hardin 1968; Keller 1999). The challenge for evolutionary biology is to understand how groups can prevent or reduce the selfish exploitation of resources by group members, and how societies with low relatedness are maintained. In social insects the evolutionary shift from single- to multiple queens colonies modified the relatedness structure, the dispersal, and the mode of colony founding (e.g. (Crozier & Pamilo 1996). In ants, the most common, and presumably ancestral mode of reproduction is the emission of winged males and females, which found a new colony independently after mating and dispersal flights (Hölldobler & Wilson 1990). The alternative reproductive tactic for ant queens in multiple-queen colonies (polygyne) is to seek to be re-accepted in their natal colonies, where they may remain as additional reproductives or subsequently disperse on foot with part of the colony (budding) (Bourke & Franks 1995; Crozier & Pamilo 1996; Hölldobler & Wilson 1990). Such ant colonies can contain up to several hundred reproductive queens with an even more numerous workforce (Cherix 1980; Cherix 1983). As a consequence in polygynous ants the relatedness among nestmates is very low, and workers raise brood of queens to which they are only distantly related (Crozier & Pamilo 1996; Queller & Strassmann 1998). Therefore workers could increase their inclusive fitness by preferentially caring for their closest relatives and discriminate against less related or foreign individuals (Keller 1997; Queller & Strassmann 2002; Tarpy et al. 2004). However, the bulk of the evidence suggests that social insects do not behave nepotistically, probably because of the costs entailed by decreased colony efficiency or discrimination errors (Keller 1997). Recently, the consensus that nepotistic behaviour does not occur in insect colonies was challenged by a study in the ant Formica fusca (Hannonen & Sundström 2003b) showing that the reproductive share of queens more closely related to workers increases during brood development. However, this pattern can be explained either by nepotism with workers preferentially rearing the brood of more closely related queens or intrinsic differences in the viability of eggs laid by queens. In the first chapter, we designed an experiment to disentangle nepotism and differences in brood viability. We tested if workers prefer to rear their kin when given the choice between highly related and unrelated brood in the ant F. exsecta. We also looked for differences in egg viability among queens and simulated if such differences in egg viability may mistakenly lead to the conclusion that workers behave nepotistically. The acceptance of queens in polygnous ants raises the question whether the varying degree of relatedness affects their share in reproduction. In such colonies workers should favour nestmate queens over foreign queens. Numerous studies have investigated reproductive skew and partitioning of reproduction among queens (Bourke et al. 1997; Fournier et al. 2004; Fournier & Keller 2001; Hammond et al. 2006; Hannonen & Sundström 2003a; Heinze et al. 2001; Kümmerli & Keller 2007; Langer et al. 2004; Pamilo & Seppä 1994; Ross 1988; Ross 1993; Rüppell et al. 2002), yet almost no information is available on whether differences among queens in their relatedness to other colony members affects their share in reproduction. Such data are necessary to compare the relative reproductive success of dispersing and non-dispersing individuals. Moreover, information on whether there is a difference in reproductive success between resident and dispersing queens is also important for our understanding of the genetic structure of ant colonies and the dynamics of within group conflicts. In chapter two, we created single-queen colonies and then introduced a foreign queens originating from another colony kept under similar conditions in order to estimate the rate of queen acceptance into foreign established colonies, and to quantify the reproductive share of resident and introduced queens. An increasing number of studies have investigated the discrimination ability between ant workers (e.g. Holzer et al. 2006; Pedersen et al. 2006), but few have addressed the recognition and discrimination behaviour of workers towards reproductive individuals entering colonies (Bennett 1988; Brown et al. 2003; Evans 1996; Fortelius et al. 1993; Kikuchi et al. 2007; Rosengren & Pamilo 1986; Stuart et al. 1993; Sundström 1997; Vásquez & Silverman in press). These studies are important, because accepting new queens will generally have a large impact on colony kin structure and inclusive fitness of workers (Heinze & Keller 2000). In chapter three, we examined whether resident workers reject young foreign queens that enter into their nest. We introduced mated queens into their natal nest, a foreign-female producing nest, or a foreign male-producing nest and measured their survival. In addition, we also introduced young virgin and mated queens into their natal nest to examine whether the mating status of the queens influences their survival and acceptance by workers. On top of polgyny, some ant species have evolved an extraordinary social organization called 'unicoloniality' (Hölldobler & Wilson 1977; Pedersen et al. 2006). In unicolonial ants, intercolony borders are absent and workers and queens mix among the physically separated nests, such that nests form one large supercolony. Super-colonies can become very large, so that direct cooperative interactions are impossible between individuals of distant nests. Unicoloniality is an evolutionary paradox and a potential problem for kin selection theory because the mixing of queens and workers between nests leads to extremely low relatedness among nestmates (Bourke & Franks 1995; Crozier & Pamilo 1996; Keller 1995). A better understanding of the evolution and maintenance of unicoloniality requests detailed information on the discrimination behavior, dispersal, population structure, and the scale of competition. Cryptic genetic population structure may provide important information on the relevant scale to be considered when measuring relatedness and the role of kin selection. Theoretical studies have shown that relatedness should be measured at the level of the `economic neighborhood', which is the scale at which intraspecific competition generally takes place (Griffin & West 2002; Kelly 1994; Queller 1994; Taylor 1992). In chapter four, we conducted alarge-scale study to determine whether the unicolonial ant Formica paralugubris forms populations that are organised in discrete supercolonies or whether there is a continuous gradation in the level of aggression that may correlate with genetic isolation by distance and/or spatial distance between nests. In chapter five, we investigated the fine-scale population structure in three populations of F. paralugubris. We have developed mitochondria) markers, which together with the nuclear markers allowed us to detect cryptic genetic clusters of nests, to obtain more precise information on the genetic differentiation within populations, and to separate male and female gene flow. These new data provide important information on the scale to be considered when measuring relatedness in native unicolonial populations.
Resumo:
Aim Identifying climatic niche shifts and their drivers is important to accurately predict the risk of biological invasions. The niches of non-native plants and birds have recently been assessed in large-scale multi-species studies, but such large-scale tests are lacking for non-native reptiles and amphibians (herpetofauna). Furthermore, little is known about the factors contributing to niche shifts when they occur. Based on the occurrence of 71 reptile and amphibian species, we compared native and non-native realized niches in 101 invaded ranges at a worldwide scale and identified the factors that affect niche shifts. Location The world except the Antarctic. Methods We assessed climatic niche dynamics in a gridded environmental space allowing the quantification of niche overlap and expansion into climatic conditions not colonized by the species in their native range. We analyzed the factors affecting niche shifts using a model averaging approach based on generalized linear mixed-effects models. Results Approximately 57% of the invaded ranges (51% for amphibians and 61% for reptiles) showed niche shifts (≥10% expansion in the realized climatic niche). Island endemics, species introduced to Oceania and invaded ranges outside the native biogeographic realm showed a higher proportion of niche shifts. Niche shifts were more likely for species that had smaller native range sizes, were introduced earlier into a new range or invaded areas located at lower latitudes than the native range. Main conclusions The proportion of niche shifts for non-native herpetofauna was higher than those for Holarctic non-native plants and European non-native birds. The 'climate matching hypothesis' should be used with caution for species shifting their niche because it could underestimate the risk of their establishment.
Resumo:
Despite the increase of animal and plant introductions worldwide and the strong augmentation of the reptile trade, few invasive snake populations have been studied. Dice snakes (Natrix tessellata) were introduced to the shores of Lake Geneva (Switzerland) in the early 1920s, and are now well established. This region of introduction was previously inhabited by Viperine snakes (N. maura). Ever since these two species have been under monitoring (which began in 1996) the Viperine snake population has shown drastic decline. We examine here the possibility of trophic competition by analysing diet composition, prey size and trophic niche overlap. Spatial distribution is also assessed in order to address the question of spatial competitive exclusion. We found very similar diets, and thus a high trophic niche overlap, indicating no partitioning of the trophic resource. No arguments in favour of spatial competitive exclusion were found. Our study suggests that trophic competition may occur between the two natricines and that it may give an explanation for the drastic decline of the Viperine snake in this area. Other pathways potentially playing a role in the exclusion of the Viperine snake are discussed.
Resumo:
Conservation and improvement strategies should be based on the association between genetic and phenotypic characteristics. The objective of this work was to characterize five native Brazilian cattle breeds (Caracu, Crioulo Lageano, Curraleiro, National Polled and Pantaneiro) and two commercial breeds (Holstein and Nellore) using RAPD technique to estimate genetic distances and variability between and within breeds. Genetic relationships were investigated using 22 primers which generated 122 polymorphic bands. Analysis of molecular variance indicated that most of the genetic variation lay among individuals within populations. The genetic variabilities between pairs of breeds were statistically significant. The smallest genetic divergence was between Crioulo Lageano and Curraleiro.The National Polled, although historically considered to be of Bos taurus aquitanicus origin,similar to theCaracu, was grouped together with the other breeds of Bos taurus ibericus origin. Generally, the individual breeds formed distinct clusters except the National Polled. The RAPD technique was capable to distinguish genetically between the breeds studied; the Caracu, Crioulo Lageano, Curraleiro and Pantaneiro may be considered distinct genetic entities thereby proving the uniqueness of the populations; the National Polled has not been able to re-establish itself after its decline in the 1950s, thereby losing its genetic identity.
Resumo:
An increasing body of research has pointed to the relevance of social capital in studying a great variety of socio-economic phenomena, ranging from economics growth and development to educational attainment and public health. Conceptually, our paper is framed within the debates about the possible links between health and social capital, on one hand, and within the hypotheses regarding the importance of social and community networks in all stages of the dynamics of international migration, on the other hand. Our primary objective is to explore the ways social relations contribute to health differences between the immigrants and the native-born population of Spain. We also try to reveal differences in the nature of the social networks of foreign-born, as compared to that of the native-born persons. The empirical analysis is based on an individual-level data coming from the 2006 Spanish Health Survey, which contains a representative sample of the immigrant population. To assess the relationship between various health indicators (self-assessed health, chronic conditions and long-term illness) and social capital, controlling for other covariates, we estimate multilevel models separately for the two population groups of interest. In the estimates we distinguish between individual and community-level social capital. While the Health Survey contains information that allows us to define individual social capital measures, the collective indicators come from other official sources. In particular, for the subsample of immigrants, we proxy community-level networks and relationships by variables contained in the Spanish National Survey of Immigrants 2007. The results obtained so far point to the relevance of social capital as a covariate in the health equation, although, the significance varies according to the specific health indicator used. Additionally, and contrary to what is expected, immigrants’ social networks seem to be inferior to those of the native-born population in many aspects; and they also affect immigrant’s health to a lesser extent. Policy implications of the findings are discussed. Keywords: health status, social capital, immigration, Spain
Resumo:
The main environmental variables determining the community structure and the functioning of Mediterranean shallow lentic ecosystems are described. These ecosystems are characterized by the unpredictability of their water inputs and the high variability in their water level and physical and chemical composition. Variations in flooding, salinity, and water turnover are determinant in species composition and nutrient dynamics. Taxon-based and size-based approaches to the study of the community structure of aquatic organisms that colonise these ecosystems are also compared. The conventional taxonomic approach, based on the determination of species composition, has been used for the identification of patterns in species richness, distribution and temporal dynamics, and for ecological requirements of species and their potential use as ecological indicators. This taxonbased approach has been compared with a size-based approach, where individuals are classified by their size. Size-based approach gives complementary information about community structure and dynamics, especially when communities are dominated by a single species. The use of size diversity combined with species diversity is suggested for a more complete understanding of community structuring in this type of ecosystem. Detailed examples of two Mediterranean shallow lentic ecosystems, the salt marshes of the Empordà wetlands and the Espolla temporary karstic pond, which differ in hydrology and water origin, are used to discuss the suitability of these different approaches
Resumo:
Asexual reproduction is particularly common among introduced species, probably because it helps to overcome the negative effects associated with low population densities during colonization. The ant Cerapachys biroi has been introduced to tropical and subtropical islands around the world since the beginning of the last century. In this species, workers can reproduce via thelytokous parthenogenesis. Here, we use genetic markers to reconstruct the history of anthropogenic introductions of C. biroi, and to address the prevalence of female parthenogenesis in introduced and native populations. We show that at least four genetically distinct lineages have been introduced from continental Asia and have led to the species' circumtropical establishment. Our analyses demonstrate that asexual reproduction dominates in the introduced range and is also common in the native range. Given that C. biroi is the only dorylomorph ant that has successfully become established outside of its native range, this unusual mode of reproduction probably facilitated the species' worldwide spread. On the other hand, the rare occurrence of haploid males and at least one clear case of sexual recombination in the introduced range show that C. biroi has not lost the potential for sex. Finally, we show that thelytoky in C. biroi probably has a genetic rather than an infectious origin, and that automixis with central fusion is the most likely underlying cytological mechanism. This is in accordance with what is known for other thelytokous eusocial Hymenoptera.
Resumo:
When colonizing a new habitat, populations must adapt their sexual behaviour to new ecological constraints. Because caves display drastically different conditions from surface habitats and cave animals are deprived from visual information, hypogean populations are expected to have modified their mate preference and signalling behaviour after cave colonization. Here, we experimentally examined the female preference and the sexual behaviour of brook newts Calotriton asper from different cave and river populations, either in light or in darkness. Our results suggest that females prefer large individuals in both hypogean and epigean populations, but that this preference is only expressed in the light conditions of their native habitat. Hence, some mate choice criteria would be maintained across genetically divergent populations and throughout dissimilar habitats. However, this sexual behaviour is likely to be expressed via a different sensory pathway in the different habitats, suggesting that a sensory shift has occurred in cave populations, enabling animals to communicate through a non-visual channel.