822 resultados para Nanocomposites. Nanographite. Epoxy. Expanded graphite. Microwave
Resumo:
Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well.
Resumo:
Purpose: To assess the feasibility of a method based on microwave spectrometry to detect structural distortions of metallic stents in open air conditions and envisage the prospects of this approach toward possible medical applicability for the evaluation of implanted stents. Methods: Microwave absorbance spectra between 2.0 and 18.0 GHz were acquired in open air for the characterization of a set of commercial stents using a specifically design setup. Rotating each sample over 360º, 2D absorbance diagrams were generated as a function of frequency and rotation angle. To check our approach for detecting changes in stent length (fracture) and diameter (recoil), two specific tests were performed in open air. Finally, with a few adjustments, this same system provides 2D absorbance diagrams of stents immersed in a water-based phantom, this time over a bandwidth ranging from 0.2 to 1.8 GHz. Results: The authors show that metallic stents exhibit characteristic resonant frequencies in their microwave absorbance spectra in open air which depend on their length and, as a result, may reflect the occurrence of structural distortions. These resonances can be understood considering that such devices behave like dipole antennas in terms of microwave scattering. From fracture tests, the authors infer that microwave spectrometry provides signs of presence of Type I to Type IV stent fractures and allows in particular a quantitative evaluation of Type III and Type IV fractures. Recoil tests show that microwave spectrometry seems able to provide some quantitative assessment of diametrical shrinkage, but only if it involves longitudinal shortening. Finally, the authors observe that the resonant frequencies of stents placed inside the phantom shift down with respect to the corresponding open air frequencies, as it should be expected considering the increase of dielectric permittivity from air to water. Conclusions: The evaluation of stent resonant frequencies provided by microwave spectrometry allows detection and some quantitative assessment of stent fracture and recoil in open air conditions. Resonances of stents immersed in water can be also detected and their characteristic frequencies are in good agreement with theoretical estimates. Although these are promising results, further verifica tion in a more relevant phantom is required in order to foresee the real potential of this approach.
Resumo:
Chiral symmetrical alk-2-yne-1,4-diols have been stereoselectively transformed into 5-alkyl-4-alkenyl-4-phenyl-1,3-oxazolidin- 2-ones, which are precursors of quaternary α-amino β-hydroxy acids. The key step was the cyclization of the bis(tosylcarbamates) of 2- phenylalk-2-yne-1,4-diols, easily obtained from the starting chiral diols. These cyclizations were accomplished with complete regioselectivity and up to 92:8 dr in the presence of catalytic amounts of Ni(0) or Pd (II) derivatives under microwave heating.
Resumo:
The construction of a tubular hydrogen ion-selective potentiometric electrode without inner reference solution, based on the tridodecylamine (TDDA) ionophore, and its evaluation in a flow system are described. TDDA was dissolved in 2-nitrophenyl octyl ether, dispersed in a PVC membrane and applied directly to a conducting support which consisted of an epoxy resin and graphite mixture. The electrode was designed with a tubular geometry to effort facilities to be coupled as part of a flow injection network. The main working characteristics such as response time, linear pH range, selectivity and life time were evaluated and compared with those obtained which a conventionally shaped electrode based on the same sensor. The electrode showed a slope of 51-52 mV dec-1 within a linear pH range from 4.0 up to 12.0.
Resumo:
In this research manufacturability analysis is made for an E-plane waveguide ring resonator. About the electrical characteristics of the waveguide ring resonator is discussed. Possibilities to utilize concurrent engineering method both for designing and making manufacturability analysis for MW- and RF-components are discussed. For helping to establish the necessary guidelines for easy manufacturing and assembly of the waveguide ring resonator a specialised DFM(A)-questionnaire is generated. The questionnaire gives also new information for collaborative designing approach in MW-/RF- engineering. The advantages and disadvantages of the concurrent engineering design method are evaluated in the research.
Resumo:
In this paper, manufacturability analysis and collection of design aspects is made for a microwave test-fixture. Aspects of applying systematic design for a microwave test-fixture design and manufacturing are also analysed. Special questionnaires for the component and machining are made in order to enable necessary information to ensure DFM(A) – aspects of the component. The aspects of easy manufacturing for machining the microwave test-fixture are collected. Material selection is discussed and manufacturing stages of prototype manufacturing are presented.
Resumo:
Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (~800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology.
Resumo:
The construction and analytical evaluation of a coated graphite Al(III) ion-selective electrode, based on the ionic pair formed between the Al(F)n3-n anion and tricaprylylmethylammonium cation (Aliquat 336S) incorporated on a poly(vinylchloride) (PVC) matrix membrane are described. A thin membrane film of this ionic pair and dibutylphthalate (DBPh) in PVC was deposited directly on a cylindric graphite rod (2 cm length x 0.5 cm diameter) attached to the end of a glass tube using epoxy resin. The membrane solution was prepared by dissolving 40% (m/m) of PVC in 10 mL of tetrahydrofuran following addition of 45% (m/m) of DBPh and 15% (m/m) of the ionic pair. The effect of membrane composition, fluoride concentration, and several concomitants as potential interferences on the electrode response were investigated. The aluminium(III) ion-selective electrode showed a linear response ranging from 1.4 x 10-4 to 1.0 x 10-2 mol L-1, a detection limit of 4.0 x 10-5 mol L-1, aslope of -54.3±0.2mV dec-1 and a lifetime of more than 1 year (over 3000 determinations for each membrane). The slope indicates that the ion-selective electrode responds preferentially to the Al(F)4- species. Application of this electrode for the aluminium(III) determination in stomach anti-acid samples is reported.
Resumo:
The construction and analytical evaluation of a coated graphite-epoxy electrode sensitive to the zinc-1,10-phenantroline complex based on the [Zn(fen)3][tetrakis(4-chlorophenyl)borate]2 incorporated into a poly(vinylchloride) (PVC) matrix are described. A thin membrane film of this ion-pair, dibutylphthalate (DBPh) and PVC were deposited directly onto an electrically conductive graphite-epoxy support located inside a Perspex® tube. The best PVC polymeric membrane contains 65% (m/m) DBPh, 30% (m/m) PVC and 5% (m/m) of the ion-pair. This electrode shows a response of 19.5 mV dec-1 over the zinc(II) concentration range of 1.0 x 10-5 to 1.0 x 10-3 mol L-1 in 1,10-phenantroline medium, at pH 6.0. The response time was less than 20 seconds and the lifetime of this electrode was more than four months (over 1200 determinations by each polymeric membrane). It was successfully used as an indicator electrode in the potentiometric precipitation titration of zinc(II) ions.
Resumo:
Now when the technology is fast developing it is very important to investigate new hybrid structures. One way is to use ferrite ferroelectric layered structures. Theoretical and experimental investigation of such structures was made. These structures have advantages of both layers and it is possible to tune the behavior of this structure by external electric and magnetic field. But these structures have some disadvantages connected with presence of thick ferroelectric layer. One way to overcome this problem is to use slotline. So this is another new way to create hybrid ferrite ferroelectric structures, but it is needed to create new theory and find experimental proof that the behavior of these structures can be tuned with external magnetic and electric fields.
Resumo:
A composite electrode prepared by mixing a commercial epoxy resin Araldite® and graphite powder is proposed to be used in didactic experiments. The electrode is prepared by the students and applied in simple experiments to demonstrate the effect of the composite composition on the conductivity and the voltammetric response of the resulting electrode, as well as the response in relation to the scan rate dependence on mass transport. The possibility of using the composite electrode in quantitative analysis is also demonstrated.
Resumo:
This work describes methods for the simultaneous determination of Cd and Pb by graphite furnace atomic absorption spectrometry and As by hydride generation atomic absorption spectrometry in Brazilian nuts. The samples (~ 0.300 g) were digested to clear solutions in a closed vessel microwave oven. The pyrolysis and atomization temperatures for simultaneous determinations of Cd and Pb were 1100 and 2100 °C, respectively, using 0.5% (w v-1) NH4H2PO4 + 0.03% (w v-1) Mg(NO3)2 as chemical modifier. The limits of detection (3Δ) were 3.8 μg kg-1 for As, 0.86 μg kg-1 for Cd and 13 μg kg-1 for Pb. The reliability of the entire procedures was confirmed by peach leaves (No. 1547 - NIST) certified reference material analysis and addition and recovery tests. The found concentrations presented no statistical differences at the 95% confidence level.
Resumo:
Lettuce is worldwide known as the most important vegetable. In this context, most farmers are searching new techniques for best quality products including hydropony. However, nitrate is of great concern, since it has a negative impact on human metabolism. The main objective of the present work was to evaluate the nitrate content of lettuce produced by conventional and hydroponic systems. The determination was conducted by ion chromatography and a new method of extraction was tested using microwave oven digestion. The results indicated that nitrate level produced in the conventional system was lower than in the hydroponic system.
Resumo:
An analytical method for the determination of the anti-inflammatory drug 5-aminosalicylic acid (5-ASA) in pharmaceutical formulations using square wave voltammetry at pencil graphite electrodes was developed. After the optimization of the experimental conditions, calibration curves were obtained in the linear concentration range from 9.78 × 10-7 to 7.25 × 10-5 mol L-1 resulting in a limit of detection of 2.12 ± 0.05 x 10-8 mol L-1. Statistical tests showed that the concentrations of 5-ASA in commercial tablets and enemas obtained with the proposed voltammetric method agreed with HPLC values at a 95% confidence level.
Resumo:
It was carried out an electrochemical study of the cobalt electrodeposition onto HOPG electrode from an aqueous solution containing 10-2 M of CoSO4 + 1M (NH4)2SO4. Nucleation parameters such as nucleation rate, density of active nucleation sites, saturation nucleus and the rate constant of the proton reduction reaction (kPR) were determined from potentiostatic studies. An increase in kPR values with the decrease in the applied potential suggested a competition between H+ and Co2+ by the active sites on the surface. The ΔG energy calculated for the formation of stable nucleus was 8.21x10-21 J/nuclei. The AFM study indicated the formation of small clusters of 50-400 nm in diameter and 2-120 nm in height.