987 resultados para Nakagami-m fading channel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent development of indoor wireless local area network (WLAN) standards at 2.45 GHz and 5 GHz has led to increased interest in propagation studies at these frequency bands. Within the indoor environment, human body effects can strongly reduce the quality of wireless communication systems. Human body effects can cause temporal variations and shadowing due to pedestrian movement and antenna- body interaction with portable terminals. This book presents a statistical characterisation, based on measurements, of human body effects on indoor narrowband channels at 2.45 GHz and at 5.2 GHz. A novel cumulative distribution function (CDF) that models the 5 GHz narrowband channel in populated indoor environments is proposed. This novel CDF describes the received envelope in terms of pedestrian traffic. In addition, a novel channel model for the populated indoor environment is proposed for the Multiple-Input Multiple-Output (MIMO) narrowband channel in presence of pedestrians at 2.45 GHz. Results suggest that practical MIMO systems must be sufficiently adaptive if they are to benefit from the capacity enhancement caused by pedestrian movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important trend in Chilean retailing industry is the increase in channel blurring. This investigation attempts to identify the relevant store attributes for different retail formats (grocery, department store, drug store, and home improvement). Do consumer store attribute saliency vary for different retail formats? Interviews identified twelve salient store attributes for the different retail formats. Survey results showed differences in store attribute saliencies for consumers when shopping at different formats. Seven of the twelve variables showed significant differences across formats. However, two attributes were relatively important for all four retail formats: product quality and responsiveness of employees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The internet infrastructure which supports high data rates has a major impact on the Australian economy and the world. However, in rural Australia, the provision of broadband services to an internet dispersed population over a large geographical area with low population densities remains both an economic and technical challenge [1]. Furthermore, the implementation of currently available technologies such as fibre-to-the-premise (FTTP), 3G, 4G and WiMAX seems to be impractical, considering the low population density that is distributed in a large area. Therefore, new paradigms and innovative telecommunication technologies need to be explored to overcome the challenges of providing faster and more reliable broadband internet services to internet dispersed rural areas. The research project implements an innovative Multi-User- Single-Antenna for MIMO (MUSA-MIMO) technology using the spectrum currently allocated to analogue TV. MUSAMIMO technology can be considered as a special case of MIMO technology, which is beneficial when provisioning reliable and high-speed communication channels. Particularly, the abstract describes the development of a novel MUSA-MIMO channel model that takes into account temporal variations in the rural wireless environment. This can be considered as a novel approach tailor-made to rural Australia for provisioning efficient wireless broadband communications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-speed broadband internet access is widely recognised as a catalyst to social and economic development, having a significant impact on global economy. Rural Australia’s inherent dispersed population over a large geographical area make the delivery of efficient, well-maintained and cost-effective internet a challenging task. The novel and highly-efficient Multi-User-Single-Antenna for MIMO (MUSA-MIMO) broadband wireless communication technology can effectively be used to deliver wireless broadband access to rural areas. This research aims to develop for the first time, an efficient and accurate algorithm for the tracking and prediction of Channel State Information (CSI) at the transmitter, by characterising time variation effects of the wireless communication channel on the performance of a highly-efficient MUSA-MIMO technology particularly suited for rural communities, improving their quality of life and economic prosperity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid growth of mobile telephone use, satellite services, and now the wireless Internet and WLANs are generating tremendous changes in telecommunication and networking. As indoor wireless communications become more prevalent, modeling indoor radio wave propagation in populated environments is a topic of significant interest. Wireless MIMO communication exploits phenomena such as multipath propagation to increase data throughput and range, or reduce bit error rates, rather than attempting to eliminate effects of multipath propagation as traditional SISO communication systems seek to do. The MIMO approach can yield significant gains for both link and network capacities, with no additional transmitting power or bandwidth consumption when compared to conventional single-array diversity methods. When MIMO and OFDM systems are combined and deployed in a suitable rich scattering environment such as indoors, a significant capacity gain can be observed due to the assurance of multipath propagation. Channel variations can occur as a result of movement of personnel, industrial machinery, vehicles and other equipment moving within the indoor environment. The time-varying effects on the propagation channel in populated indoor environments depend on the different pedestrian traffic conditions and the particular type of environment considered. A systematic measurement campaign to study pedestrian movement effects in indoor MIMO-OFDM channels has not yet been fully undertaken. Measuring channel variations caused by the relative positioning of pedestrians is essential in the study of indoor MIMO-OFDM broadband wireless networks. Theoretically, due to high multipath scattering, an increase in MIMO-OFDM channel capacity is expected when pedestrians are present. However, measurements indicate that some reductions in channel capacity could be observed as the number of pedestrians approaches 10 due to a reduction in multipath conditions as more human bodies absorb the wireless signals. This dissertation presents a systematic characterization of the effects of pedestrians in indoor MIMO-OFDM channels. Measurement results, using the MIMO-OFDM channel sounder developed at the CSIRO ICT Centre, have been validated by a customized Geometric Optics-based ray tracing simulation. Based on measured and simulated MIMO-OFDM channel capacity and MIMO-OFDM capacity dynamic range, an improved deterministic model for MIMO-OFDM channels in indoor populated environments is presented. The model can be used for the design and analysis of future WLAN to be deployed in indoor environments. The results obtained show that, in both Fixed SNR and Fixed Tx for deterministic condition, the channel capacity dynamic range rose with the number of pedestrians as well as with the number of antenna combinations. In random scenarios with 10 pedestrians, an increment in channel capacity of up to 0.89 bits/sec/Hz in Fixed SNR and up to 1.52 bits/sec/Hz in Fixed Tx has been recorded compared to the one pedestrian scenario. In addition, from the results a maximum increase in average channel capacity of 49% has been measured while 4 antenna elements are used, compared with 2 antenna elements. The highest measured average capacity, 11.75 bits/sec/Hz, corresponds to the 4x4 array with 10 pedestrians moving randomly. Moreover, Additionally, the spread between the highest and lowest value of the the dynamic range is larger for Fixed Tx, predicted 5.5 bits/sec/Hz and measured 1.5 bits/sec/Hz, in comparison with Fixed SNR criteria, predicted 1.5 bits/sec/Hz and measured 0.7 bits/sec/Hz. This has been confirmed by both measurements and simulations ranging from 1 to 5, 7 and 10 pedestrians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effect of dielectric filling in a V groove on the propagation parameters of channel plasmon-polariton (CPP) modes. In particular, existence conditions and critical groove angles, mode localization, field structure, dispersion, and propagation distances of CPP modes are analyzed as functions of dielectric permittivity inside the groove. It is demonstrated that increasing dielectric permittivity in the groove results in a rapid increase of mode localization near the tip of the groove and increase of both the critical angles that determine a range of groove angles for which CPP modes can exist. Detailed analysis of the field structure has demonstrated that the maximum of the field in a CPP mode is typically reached at a small distance from the tip of the groove. The effect of rounded tip is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pedestrian movement is known to cause significant effects on indoor MIMO channels. In this paper, a statistical characterization of the indoor MIMO-OFDM channel subject ot pedestrian movement is reported. The experiment used 4 sending and 4 receiving antennas and 114 sub-carriers at 5.2 GHz. Measurement scenarios varied from zero to ten pedestrians walking randomly between transmitter (tx) and receiver (Rx) arrays. The empirical cumulative distribution function (CDF) of the received fading envelope fits the Ricean distribution with K factors ranging from 7dB to 15 dB, for the 10 pedestrians and vacant scenarios respectively. In general, as the number of pedestrians increase, the CDF slope tends to decrease proportionally. Furthermore, as the number of pedestrians increase, increasing multipath contribution, the dynamic range of channel capacity increases proportionally. These results are consistent with measurement results obtained in controlled scenarios for a fixed narrowband Single-Input Single-Output (SISO) link at 5.2 GHz in previous work. The described empirical characterization provides an insight into the prediction of human-body shadowing effects for indoor MIMO-OFDM channels at 5.2 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antecedents of channel power (e.g. El-Ansary and Stern, 1972) and the impact of channel structure ( e.g. Anderson and Narus,1984) on channel dynamics have long been important topics within the channel literature. In addition to the theoretical and methodological contributions, research in these areas has helped channel managers to understand how power is generated and used in coordinating distribution strategies in different contexts. The study presented in this paper builds upon these previous literatures, which are first briefly reviewed below.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides an overview of the A$11 billion English Channel Tunnel Project. The author's experiences are based on his recent work experience with a British Consulting Engineer involved with this unique project. After providing an historical background, the project is considered in terms of the project structure and funding, the cross Channel transport market and the planned integrated transport system in terms of both design and construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LiteSteel beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. The LSBs are commonly used as flexural members in buildings. However, the LSB flexural members are subjected to lateral distortional buckling, which reduces their member moment capacities. Unlike the commonly observed lateral torsional buckling of steel beams, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist, and cross sectional change due to web distortion. An experimental study including more than 50 lateral buckling tests was therefore conducted to investigate the behaviour and strength of LSB flexural members. It included the available 13 LSB sections with spans ranging from 1200 to 4000 mm. Lateral buckling tests based on a quarter point loading were conducted using a special test rig designed to simulate the required simply supported and loading conditions accurately. Experimental moment capacities were compared with the predictions from the design rules in the Australian cold-formed steel structures standard. The new design rules in the standard were able to predict the moment capacities more accurately than previous design rules. This paper presents the details of lateral distortional buckling tests, in particular the features of the lateral buckling test rig, the results and the comparisons. It also includes the results of detailed studies into the mechanical properties and residual stresses of LSBs.