998 resultados para NORTHERN COAST


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composition, grain-size distribution, and areal extent of Recent sediments from the Northern Adriatic Sea along the Istrian coast have been studied. Thirty one stations in four sections vertical to the coast were investigated; for comparison 58 samples from five small bays were also analyzed. Biogenic carbonate sediments are deposited on the shallow North Adriatic shelf off the Istrian coast. Only at a greater distance from the coast are these carbonate sediments being mixed with siliceous material brought in by the Alpine rivers Po, Adige, and Brenta. Graphical analysis of grain-size distribution curves shows a sediment composition of normally three, and only in the most seaward area, of four major constituents. Constituent 1 represents the washed-in terrestrial material of clay size (Terra Rossa) from the Istrian coastal area. Constituent 2 consists of fine to medium sand. Constituent 3 contains the heterogeneous biogenic material. Crushing by organisms and by sediment eaters reduces the coarse biogenic material into small pieces generating constituent 2. Between these two constituents there is a dynamic equilibrium. Depending upon where the equilibrium is, between the extremes of production and crushing, the resulting constituent 2 is finer or coarser. Constituent 4 is composed of the fine sandy material from the Alpine rivers. In the most seaward area constituents 2 and 4 are mixed. The total carbonate content of the samples depends on the distance from the coast. In the near coastal area in high energy environments, the carbonate content is about 80 %. At a distance of 2 to 3 km from the coast there is a carbonate minimum because of the higher rate of sedimentation of clay-sized terrestrial, noncarbonate material at extremely low energy environments. In an area between 5 and 20 km off the coast, the carbonate content is about 75 %. More than 20 km from the shore, the carbonate content diminishes rapidly to values of about 30 % through mixing with siliceous material from the Alpine rivers. The carbonate content of the individual fractions increases with increasing grain-size to a maximum of about 90 % within the coarse sand fractions. Beyond 20 km from the coast the samples show a carbonate minimum of about 13 % within the sand-size classes from 1.5 to 0.7 zeta¬? through mixing with siliceous material from the alpine rivers. By means of grain-size distribution and carbonate content, four sediment zones parallel to the coast were separated. Genetically they are closely connected with the zonation of the benthic fauna. Two cores show a characteristic vertical distribution of the sediment. The surface zone is inversely graded, that means the coarse fractions are at the top and the fine fractions are at the bottom. This is the effect of crushing of the biogenic material produced at the surface by predatory organisms and by sediment eaters. lt is proposed that at a depth of about 30 cm a chemical solution process begins which leads to diminution of the original sediment from a fine to medium sand to a silt. The carbonate content decreases from about 75 % at the surface to 65 % at a depth of 100 cm. The increase of the noncarbonate components by 10 % corresponds to a decrease in the initial amount of sediment (CaC03=75 %) by roughly 30 % through solution. With increasing depth the carbonate content of the individual fractions becomes more and more uniform. At the surface the variation is from 30 % to 90 %, at the bottom it varies only between 50 % and 75 %. Comparable investigations of small-bay sediments showed a c1ear dependence of sediment/faunal zonation from the energy of the environment. The investigations show that the composition and three-dimensional distribution of the Istrian coastal sediments can not be predicted only from one or a few measurable factors. Sedimentation and syngenetic changes must be considered as a complex interaction between external factors and the actions of producing and destroying organisms that are in dynamic equilibrium. The results obtained from investigations of these recent sediments may be of value for interpreting fossil sediments only with strong limitations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The carbonate contents in the boulder clay ('Geschiebemergel') of abrasion cliffs were investigated along the Baltic coast of Schleswig-Holstein, northern West Germany. The calcareous boulder clay and stratified drift in the cliffs are interbedded with compressed thrust sheets of Cretaceous limestone, Tertiary Tarras clay, and Eemian clay. According to chemical analyses of 173 boulder clay samples, the amount of carbonate varies mostly between 6 and 17%. Owing to the small number of samples no definite conclusion could be drawn on the distribution of Danish Cretaceous limestones in the boulder clay, nor on the different directions of movement of Weichselian glaciers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of pollen in marine sediments is used to reconstruct pathways of terrigenous input to the oceans and provides a record of vegetation change on adjacent continents. The wind transport routes of aeolian pollen is comprehensively illustrated by clusters of trajectories. Isobaric, 4-day backward trajectories are calculated using the modelled wind-field of ECHAM3, and are clustered on a seasonal basis to estimate the main pathways of aeolian particles to sites of marine cores in the south-eastern Atlantic. Trajectories and clusters based on the modelled wind-field of the Last Glacial Maximum hardly differ from those of the present-day. Trajectory clusters show three regional, and two seasonal patterns, determining the pathways of aeolian pollen transport into the south-eastern Atlantic ocean. Mainly, transport out of the continent occurs during austral fall and winter, when easterly and south-easterly winds prevail. South of 25°S, winds blow mostly from the west and southwest, and aeolian terrestrial input is very low. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in marine surface sediments and the occurrence of the source plants on the adjacent continent. The northern Angola Basin receives pollen and spores from the Congolian and Zambezian forests mainly through river discharge. The Zambezian vegetation zone is the main source area for wind-blown pollen in sediments of the Angola Basin, while the semi-desert and desert areas are the main sources for pollen in sediments of the Walvis Basin and on the Walvis Ridge. A transect of six marine pollen records along the south-western African coast indicates considerable changes in the vegetation of southern Africa between glacial and interglacial periods. Important changes in the vegetation are the decline of forests in equatorial Africa and the north of southern Africa and a northward shift of winter rain vegetation along the western escarpment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term surveys of the coast bordering the western Baltic Sea in Schleswig-Holstein yielded extensive information over the retreat and condition of active cliffs. 181 cliffs with a total length of 148 km are present along the 55 km coastline including Fehmarn lsland and the Schlei Fjord. Depending on their temporal and spatial evolution, and geomorphological stability, the cliffs are subdivided in three separate classes - actively retreating escarpments, cliff Segments with potential for retreat and stable cliffs. 85 sections of the coastline with a total length of 59 km are classified as ,,active cliffs" that are undergoing retreat through natural erosion, collapse, and disintegration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in phenotypic traits, such as mollusc shells, are indicative of variations in selective pressure along environmental gradients. Recently, increased sea surface temperature (SST) and ocean acidification (OA) due to increased levels of carbon dioxide in the seawater have been described as selective agents that may affect the biological processes underlying shell formation in calcifying marine organisms. The benthic snail Concholepas concholepas (Muricidae) is widely distributed along the Chilean coast, and so is naturally exposed to a strong physical-chemical latitudinal gradient. In this study, based on elliptical Fourier analysis, we assess changes in shell morphology (outlines analysis) in juvenile C. concholepas collected at northern (23°S), central (33°S) and southern (39°S) locations off the Chilean coast. Shell morphology of individuals collected in northern and central regions correspond to extreme morphotypes, which is in agreement with both the observed regional differences in the shell apex outlines, the high reclassification success of individuals (discriminant function analysis) collected in these regions, and the scaling relationship in shell weight variability among regions. However, these extreme morphotypes showed similar patterns of mineralization of calcium carbonate forms (calcite and aragonite). Geographical variability in shell shape of C. concholepas described by discriminant functions was partially explained by environmental variables (pCO2, SST). This suggests the influence of corrosive waters, such as upwelling and freshwaters penetrating into the coastal ocean, upon spatial variation in shell morphology. Changes in the proportion of calcium carbonate forms precipitated by C. concholepas across their shells and its susceptibility to corrosive coastal waters are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tide gauge (TG) data along the northern Mediterranean and Black Sea coasts are compared to the sea-surface height (SSH) anomaly obtained from ocean altimetry (TOPEX/Poseidon and ERS-1/2) for a period of nine years (1993–2001). The TG measures the SSH relative to the ground whereas the altimetry does so with respect to the geocentric reference frame; therefore their difference would be in principle a vertical ground motion of the TG sites, though there are different error sources for this estimate as is discussed in the paper. In this study we estimate such vertical ground motion, for each TG site, from the slope of the SSH time series of the (non-seasonal) difference between the TG record and the altimetry measurement at a point closest to the TG. Where possible, these estimates are further compared with those derived from nearby continuous Global Positioning System (GPS) data series. These results on vertical ground motion along the Mediterranean and Black Sea coasts provide useful source data for studying, contrasting, and constraining tectonic models of the region. For example, in the eastern coast of the Adriatic Sea and in the western coast of Greece, a general subsidence is observed which may be related to the Adriatic lithosphere subducting beneath the Eurasian plate along the Dinarides fault.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lofoten-Vesterålen marine shelf is one of the most geologically diverse coast and offshore margin areas in Norway. This leads to huge heterogeneity in marine environments, and often high biodiversity. However, little is known yet about the benthic communities in this region. Within the ARCTOS LoVe MarineEco project the epibenthic communities of the Hola trough (Vesterålen) are analysed to give a first description of their spatial distribution. In this trough both a complex hydrodynamic system and varied topographic submarine elements occur. Trawling samples were collected for two different approaches: one in a meso-scale and another in a small-scale. For the broad scale a transect consisting in three stations was developed, while for the fine scale a small area on a sand wave field, consisting in five stations called HolaBox, was sampled. All organisms were intended to be identified to species level and colonial fauna was discarded for the analysis. Different diversity indexes were assessed (Shannon index (H’) and Pielou’s eveness (J’)). Clustering and nMDS analyses identified four statistically significant groups in terms of abundance (ind./100m2). A total amount of 211 different taxa were found within all stations. The more outer part of the transect (close to the shelf edge) presented a huge abundance of organisms and was dominated by the hemi sessile tube-builder polychaetes Nothria conchylega and Eunice dubitata and the sea urchin Gacilechinus acutus, while the more inner parts presented less abundance of individuals. Probably some upwelling produced by the Norwegian Atlantic Current (NWAC) is influencing the shelf edge increasing the primary production and, therefore, enriching the seafloor in this region. The sand wave field presented two different groups with few amount of individuals. Small-scale variability could be produced by the high heterogeneity within the different types of sand waves, while the scarce abundance of animals can be produced by the permanent changing environment that movable sand waves produce. Here more active and mobile fauna was found such as brittle stars and hermit crabs (among others). Finally, a fourth group was found in the most inner station of the transect, laying on a ridge in the central part of the trough. This station, with coarse substrate, was mainly dominated again by brittle stars and sea urchins. We can conclude that this is a really heterogeneous trough in environments and therefore in communities (even in a local scale). More detailed studies that focus in the local environmental drivers have to be carried out to get an integrated understanding of the structure of benthic communities in this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of the coast from Musketo Island & westward to Cape Elizabeth] (sheet originally published in 1776). The map is [sheet 27] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:130,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the northern portion of the map. Covers the coast of Maine from Cape Elizabeth to Mosquito Island, and the Kennebec River and tributaries inland to Winslow, Maine. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, buildings, and roads. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of the coast from Musketo Island & westward to Cape Elizabeth] (sheet originally published in 1776). The map is [sheet 28] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:130,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the northern portion of the map. Covers the coast of Maine from Cape Elizabeth to Mosquito Island. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, buildings, and roads. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of a historic nautical chart entitled: The coast of New England (sheet originally published in 1776). The map is [sheet 2] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:534,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the northern portion of the map. Covers the coasts of Maine, New Hampshire, and Massachusetts. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns. Relief is shown by hachures; depths by soundings and shading. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.